
FH Aachen

University of Applied Sciences

Fachbereich 05: Elektrotechnik und Informationstechnik

Bachelorarbeit zum Thema:

Entwicklung einer prozeduralen
Low-Poly-Asset-Bibliothek mit

Blender Geometry Nodes
Zur Erlangung des Grades: Bachelor of Science (B. Sc.)

Vorgelegt von:
Joshua Battenfeld
Leydelstraße 3, 52064, Aachen
info@joshuabattenfeld.com
Matrikelnummer: 3580943

Erstprüfer: Prof. Dr.-Ing. Frank Hartung
Zweitprüfer: René Heß, M. A.

Abgabedatum: 26.11.2025
Studiengang: Media and Communications for Digital Business (MCD) B. Sc.

i

Kurzfassung

Die Erstellung von 3D-Modellen stellt in der Spieleentwicklung einen erheblichen
Produktionsaufwand dar. Prozedurale Generierung verspricht hier Entlastung,
indem sie die Modellierung über parametrisierbare, teil-automatisierte Systeme
unterstützt.

Moderne 3D-Software bietet zunehmend Schnittstellen zur prozeduralen
Inhaltserstellung. Dazu zählt auch das populäre Open-Source-Programm Blender,
das seit 2021 mit den Geometry Nodes eine nodebasierte Oberfläche zur nicht-
destruktiven, parametrischen Generierung von 3D-Inhalten bereitstellt.

In dieser Arbeit werden die Herausforderungen, Potenziale und Limitationen der
Entwicklung und des Einsatzes einer prozeduralen Low-Poly-Asset-Bibliothek mit
Blender Geometry Nodes untersucht.

Hierzu wird ein als Blender Add-on implementiertes Toolkit entwickelt, das aus
modularen Geometry Node Setups besteht und die effiziente Erstellung stilisierter
Low-Poly-Welten in einem mittelalterlichen Setting ermöglicht. Anschließend wird
das System im Rahmen einer Nutzerevaluation getestet und sowohl der
prozedurale Ansatz als auch die konkrete Implementierung kritisch diskutiert.

Die Arbeit schließt mit der Erkenntnis, dass prozedurale Asset-Bibliotheken in der
richtigen Umsetzung und Game-Engine naher Implementation einen echten
Mehrwert liefern können. Insgesamt verdeutlicht die Arbeit das bislang
unterschätzte Potenzial zugänglicher prozeduraler Asset-Bibliotheken,
insbesondere für Indie-Entwickler.

Abstract

The creation of 3D models represents a considerable production effort in game
development. Procedural generation promises to ease this burden by supporting
modeling via parameterizable, semi-automated systems.

Modern 3D software increasingly offers interfaces for procedural content creation.
This includes the popular open-source program Blender, which since 2021 has
provided a node-based interface for non-destructive, parametric generation of 3D
content with its Geometry Nodes.

This thesis examines the challenges, potential, and limitations of developing and
using a procedural low-poly asset library with Blender Geometry Nodes.

To this end, a toolkit implemented as a Blender add-on is developed, consisting
of modular Geometry Node setups that enable the efficient creation of stylized
low-poly worlds in a medieval setting. The system is then tested in a user
evaluation, and both the procedural approach and the concrete implementation
are critically discussed.

The thesis concludes with the finding that procedural asset libraries can deliver
added value when implemented correctly and closely integrated with the game
engine. Overall, the thesis highlights the previously underestimated potential of
accessible procedural asset libraries, especially for indie developers.

ii

Fachhochschule Aachen
Fachbereich 05 – Elektrotechnik und Informationstechnik

Studiengang: Media and Communications for Digital Business (MCD) B.Sc.

Eidesstattliche Erklärung
Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht
veröffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt
worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen
Prüfungsbehörde eingereicht worden.

Ort, Datum Joshua Battenfeld Ort, Datum

iii

Inhaltsverzeichnis
1. Einleitung .. 1

2. Theoretischer Hintergrund .. 2

2.1 Indie-Spielentwicklung ... 2

2.2 3D-Modelle im Kontext der Spieleentwicklung 4

2.2.1 Polygonale Darstellung von 3D-Modellen .. 5

2.2.2 Beschaffung von 3D-Modellen .. 6

2.3 Low-Poly Artstyle ... 8

2.3.1 Gründe für Low-Poly im LPTK ... 9

2.4 Blender im Indie-Spielentwicklungs Kontext 10

2.4.1 Blender Add-ons .. 11

2.5 Procedural Content Generation .. 12

2.5.1 Prozedurale Modellierung ... 13

2.5.2 Vor- und Nachteile prozeduraler Systeme 14

2.5.3 Automatic Generation versus Mixed Authorship 15

2.5.4 Moderne Node-Based-Tools .. 16

2.5.4.1 Houdini als Industriestandard ... 16

2.5.4.2 Spezialisierte Lösungen ... 16

2.5.5 Blender Geometry Nodes ... 17

2.5.5.1 Das Attribut-Konzept ... 18

2.5.5.2 Das Feld-Konzept (Fields) ... 18

2.5.5.3 Entwicklung der Geometry Nodes und Arbeitsumgebung 20

3. Methodik ... 21

3.1 Anforderungen an die entwickelte Asset-Bibliothek 21

3.2 Auswahl der Werkzeuge .. 22

3.2.1 Blender und Geometry Nodes als prozedurale Basis 22

3.2.2 Add-on statt Blenders integrierter Asset-Library 22

4. Umsetzung .. 24

4.1 Entwicklung der Geometry Node Trees .. 24

4.1.1 Erste Experimente .. 25

4.1.2 Parametrisierung anhand des ‚FunkyTree‘-Systems 27

4.1.3 Kurvenbasierte Pfadgenerieung .. 29

4.1.3.1 ‚Curve to Plane‘ .. 29

4.1.3.2 Instanziierung und Projektion mit ‚Stones on Surface‘ 30

4.1.3.3 ‚Material Manager‘ .. 31

4.1.3.4 ‚Default Stone Extrusion and Deformation‘ 31

iv

4.1.4 ‚ProceduralTerrain‘ .. 32

4.1.4.1 Basis-Mesh & Booleans .. 33

4.1.4.2 ‚Merge & Triangulation‘ .. 33

4.1.4.3 ‚Material Manager‘ .. 34

4.1.4.4 ‚Water Generation‘ .. 35

4.1.4.5 ‚Polish‘ .. 37

4.1.5 Erweiterung zum ‚MeshTerrain‘ ... 38

4.1.6 Scattering-Systeme .. 39

4.1.6.1 Herausforderungen eines Weight-Paint-basierten Ansatzes 39

4.1.6.2 UV-basiertes Curve-Scattering (LPTK-Ansatz) 39

4.2 Entwicklung des Add-ons in Python .. 41

4.2.1 Einlesen der Node Trees .. 42

4.2.2 ‚Node-Types‘ .. 43

4.2.3 ‚Node-Spawning‘ .. 44

4.2.4 Nutzeroberfläche .. 45

4.2.4.1 Implementierung der Oberfläche anhand des Asset Panels 46

4.2.5 Integration des Game-Enginge-Syncs .. 47

4.2.5.1 Collection Exporter .. 48

4.2.5.2 Implementierung der Export-Logik .. 49

4.2.5.3 ‚Vertex Color Baking Automation‘ ... 50

4.2.6 Entwicklung des ‚Thumbnail-Renderers‘ .. 51

5. Empirische Evaluation .. 52

5.1 Aufbau und Methodik ... 52

5.2 Quantitative Ergebnisse .. 53

5.3 Qualitative Ergebnisse .. 55

6. Diskussion .. 56

6.1 LPTK als entwickelter Ansatz .. 56

6.2 Blender und Geometry Nodes als Basis des LPTK 57

6.2.1 Blender Python API zur Add-on Entwicklung 59

6.3 Prozedurale Assets für die Spielentwicklung 59

7. Fazit und Ausblick .. 61

Literatur .. 62

Abbildungsverzeichnis ... 63

Bildquellen .. 64

Anhang .. 65

A1 Übersicht über aller Thumbnails der verfügbaren Node Setups des LPTK .. 65

v

A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation 67

A3 Kategorisierung von Indie-Spielen mit mehr als einer Millionen Verkäufe . 69

A4 Kategorisierung der „Top 100 Paid Assets” des Unity Asset Stores 69

A5 Ergebnisse der Nutzerevaluation, Google-Forms 69

A6 Ergebnisse der Nutzerevaluation, Kurzinterviews 69

A7 Referenzskizze der Nutzerevaluation .. 69

1

1. Einleitung
Diese Arbeit fokussiert sich auf die Erforschung der Blender Geometry Nodes als
System zur Erstellung einer prozeduralen Asset-Bibliothek für die
Spieleentwicklung.

Im Rahmen dieser Arbeit wurde eine prozedurale Asset-Bibliothek für Blender
entwickelt, die als Add-on realisiert ist und auf einer Reihe von Geometry Node
Setups basiert. Das resultierende System, das Low-Poly-Tool-Kit (LPTK),
ermöglicht die effiziente Erstellung stilisierter Low-Poly-Umgebungen in einem
mittelalterlichen Setting.
Zentrales Ziel des Projekts war es, eine benutzerfreundliche und erweiterbare
Oberfläche zu schaffen, die es Nutzern erlaubt, bereits mit grundlegenden 3D-
Kenntnissen komplexe Szenen zu erstellen, zu modifizieren und in gängige
Game-Engines zu exportieren.

Das LPTK wandelt einfache geometrische Formen oder Kurven in konsistente,
optisch ansprechende 3D-Modelle um. Damit adressiert es eine zentrale
Herausforderung der Spieleentwicklung: die Balance zwischen künstlerischer
Qualität, Produktionsgeschwindigkeit und technischer Flexibilität.

Insbesondere in der Prototypen-Entwicklung werden häufig abstrakte
Platzhaltermodelle verwendet, die zwar schnelle Iterationen ermöglichen, jedoch
die visuelle Aussagekraft einschränken. Das LPTK setzt an dieser Stelle an, indem
es die Effizienz von Greyboxing mit den gestalterischen Möglichkeiten
prozeduraler Systeme verbindet. Somit können bereits in frühen
Entwicklungsphasen visuell ansprechende Szenen erstellt werden, ohne den
üblichen Mehraufwand klassischer Modellierung in Kauf nehmen zu müssen.

Darüber hinaus zielt das Toolkit darauf ab, die Einstiegshürde für Solo-Entwickler
und kleine Teams zu reduzieren. Prozedurale Systeme übernehmen einen Teil der
technischen Komplexität, sodass sich Entwickler oder Artists stärker auf die
inhaltliche Gestaltung konzentrieren können, anstatt der technischen Umsetzung.

Ausgehend von der Forschungsfrage

„Welche Herausforderungen, Potenziale und Limitationen ergeben sich bei der
Entwicklung einer prozeduralen Asset-Bibliothek auf Basis von Geometry Nodes
und einer Add-on-basierten Interaktionsoberfläche?“

umfasst diese Arbeit drei zentrale Untersuchungsbereiche:

1. Das Potenzial prozeduraler Assets für eine effiziente und konsistente
Spielweltgestaltung.

2. Die technische Umsetzung prozeduraler Assets mithilfe von Blender
Geometry Nodes.

3. Die Integration der entwickelten Systeme in ein benutzerfreundliches
Blender-Add-on.

2

2. Theoretischer Hintergrund
Bevor die konkrete Umsetzung der prozeduralen Asset-Bibliothek besprochen
werden kann, müssen einige Grundlagen geklärt werden. In Kapitel 2 werden
diese besprochen. Wobei zunächst das geplante Einsatzgebiet des LPTK, also
(Indie)-Spieleentwicklung dann 3D-Modelle in diesem Kontext, der Low-Poly-
Artstyle, Blender als Software und anschließend Prozedurale Ansätze, inklusive
der Grundlagen von Blenders Geometry Nodes, besprochen werden.

2.1 Indie-Spielentwicklung
Indie-Spiele haben in den vergangenen Jahren erheblich an Bedeutung
gewonnen und stellen den Großteil der jährlichen Spieleveröffentlichungen und
im Jahr 2024 etwa die Hälfte des jährlichen Umsatzes durch Spielverkäufe über
die Plattform Steam dar1. Unter „Indie“ versteht man in der Regel Produktionen
kleinerer Studios oder Einzelentwickler, die ohne die finanzielle und
organisatorische Unterstützung großer Publisher realisiert werden. Typisch für
dieses Segment sind niedrigere Budgets, kleinere Teams und ein hohes Maß an
kreativer Freiheit.

Allerdings ist der Begriff „Indie“ nicht eindeutig definiert. Manche Definitionen
beziehen sich auf die Finanzierungsstruktur (keine Unterstützung durch
Publisher), andere auf die Teamgröße oder die Unabhängigkeit in kreativen
Entscheidungen. Entsprechend unterscheiden sich auch die zugrunde liegenden
Statistiken zu Indie-Produktionen je nach Quelle und Erhebungsmethode.
Während einige Studien ausschließlich die Finanzierungskriterien heranziehen,
erfassen andere alle Produktionen außerhalb klassischer AAA-Studios. Der Begriff
der AAA-, AA- und Indie-Studios ist hierbei aber immer fließend zu betrachten
und nicht eindeutig greifbar, Weshalb Statistiken in diesem Bereich sich auch
nicht immer auf die gleichen Spiele/Studios beziehen2. Unabhängig von der
genauen Definition gilt: Indie-Spiele stellen ein zentrales Segment der Branche

1 [1].
2 [2].

Abbildung 1: Marktanteil von auf Steam veröffentlichten Indie-Spielen von 2018 bis 2024 (Statista).

3

dar. 2024 waren zum Beispiel 98,9% aller Veröffentlichungen auf Steam Indie-
Titel (Abbildung 1).

Aufgrund der meist kleinen Teamgrößen und fehlender Spezialisten entscheiden
sich Indie-Entwickler deutlich häufiger für bestehende Softwarelösungen zur
Spieleentwicklung, anstatt eigene technische Grundlagen wie Engines oder
Frameworks zu entwickeln. Ein Blick auf entsprechende Branchenstatistiken
zeigt, dass sich insbesondere kleinere Studios mit vergleichsweise geringen
Verkaufszahlen (Abbildung 2) überproportional häufig für Unity als Game-Engine
entscheiden.

Unity gilt damit im Indie-Bereich als besonders relevante Entwicklungsumgebung
und prägt maßgeblich die Produktionsweise kleiner Teams.

Abbildung 2: Game Engine Mix nach verkauften Einheiten [3].

4

2.2 3D-Modelle im Kontext der Spieleentwicklung
Im Kontext der Spieleentwicklung stellt die Erstellung visueller Inhalte in den
meisten Fällen einen der größten Kostenfaktoren innerhalb der
Produktionspipeline dar3. Seit Anfang der 2000er-Jahre dominieren 3D-Spiele
den Markt, insbesondere bei den großen Produktionen im AA- und AAA-Segment.

Durch frei verfügbare Engines wie Unity, kostenlose Modellierungssoftware wie
Blender und einen stetig wachsenden Asset-Markt können inzwischen jedoch
auch Indie-Studios zunehmend 3D-Spiele realisieren. Abbildung 3 zeigt diesen
Trend auf Basis der Wikipedia-Liste „Indie games surpassing a million sales“, die
für diese Arbeit in 2D- und 3D-Titel unterteilt wurde (Anhang A3).

Diese Entwicklung unterstreicht den wirtschaftlichen Stellenwert von 3D-Inhalten
auch außerhalb des AAA-Bereichs. Modellierung, UV-Mapping, Texturierung,
sowie die technische Aufbereitung für Echtzeit-Engines erfordern spezialisiertes
Know-how und sind zeitintensiv.

Die Kosten von 3D-Modellen im, variieren je nach Genre und Art-Style stark von
Spiel zu Spiel, stellen jedoch im Normalfall neben den Code und Game-Design
einen der größten Kostenpunkte der 3D-Spieleentwicklung dar4.

3 [4, S. 1].
4 [5, S. 783].

Abbildung 3: Entwicklung der veröffentlichten Indie-Spiele mit über einer Million Verkäufen von 2006 bis 2024, getrennt nach
2D- und 3D-Titeln. Die Darstellung zeigt die zunehmende Bedeutung von 3D-Produktionen im Indie-Sektor (eigene Darstellung).

5

2.2.1 Polygonale Darstellung von 3D-Modellen
Es gibt verschiedene Methoden zur Repräsentation von dreidimensionalen
Objekten. Im Kontext der Spieleentwicklung und Echtzeit-Computergrafik haben
sich polygonale Modelle als Standard etabliert5.

Polygonale Modelle bestehen aus sogenannten Meshes, also Polygonnetzen,
welche die Oberfläche eines Objekts approximieren.

Ein solches Mesh setzt sich aus folgenden
Grundelementen zusammen, welche in
Abbildung 3 visualisiert sind:

• Eckpunkten (Vertices), rot dargestellt
a. Punkte im dreidimensionalen

Raum
• Kanten (Edges), grün dargestellt

a. Verbindungen zwischen zwei
Vertices

• Flächen (Faces), blau dargestellt
a. geschlossene Flächen, die durch

drei oder mehr Vertices gebildet
werden

In modernen Produktionspipelines werden
polygonale Modelle um weitere Komponenten
wie Texturen, UV-Maps, Materialdefinitionen
sowie Rigging- und Animationsdaten ergänzt.

Diese kombinieren sich zu vollständigen 3D-Assets,
die in Game-Engines wie Unity oder Unreal Engine
importiert und in Echtzeit dargestellt werden können. Im Rahmen der Arbeit
beziehe ich mich im Kontext von 3D-Modellen oder 3D-Assets grundsätzlich auf
polygonale Modelle.

Im folgenden Kapitel wird die Beschaffung solcher Modelle innerhalb der
Spieleproduktion erläutert.

5 [6, S. 1].

Abbildung 4: Polygonaler Würfel mit
visualisiertem Vertex, Edge und Face
(eigene Darstellung).

6

2.2.2 Beschaffung von 3D-Modellen
Grundsätzlich gibt es zur Erstellung der benötigten 3D-Assets verschiedene
Methoden, mit verschiedenen Vor- und Nachteilen.

Im Folgenden werden die wichtigsten Ansätze kurz beschrieben:

• Händische Modellierung

Die klassische, manuelle Erstellung von Modellen in 3D-Software wie Blender,
Maya oder 3ds Max. Sie bietet maximale Kontrolle über Form, Stil und technische
Umsetzung, ist jedoch zeitaufwendig und entsprechend kostenintensiv6.
Innerhalb dieser Kategorie existieren zahlreiche Unterformen, welche für
spezielle Modellierung oder basierend auf Präferenz des Artists gewählt werden.
Darunter beispielsweise:

o Polygonale Modellierung

Modelle werden durch Manipulation einzelner Polygone aufgebaut, meist durch
manuelle Extrusion, Skalierung und Verschiebung von Faces, Edges und Vertices.

o Digitales Sculpting

Eine freiere, skulpturähnliche Methode, bei der Formen aus einer Basisgeometrie
mithilfe von Werkzeugen zum Schieben, ziehen, glätten, greifen etc. erstellt
werden. Wird häufig für organische Objekte wie menschliche Körper verwendet.

• KI-gestützte Modellgenerierung

KI-basierte Verfahren nutzen Machine-Learning-Modelle zur Erzeugung von
Geometrie oder Texturen. Aktuelle Text-to-3D- und Image-to-3D-Ansätze wie
Meshy, Rodin oder das Open-Source-Projekt Hunyuan-3D erzielen bereits
beeindruckende Ergebnisse, weisen aber nach wie vor deutliche Schwächen in
Bereichen wie Topologie7, Retopologie und UV-Mapping auf und sind somit
schwer in professionelle Workflows zu integrieren8.
Entsprechend spielen KI-generierte Modelle derzeit noch eine untergeordnete
Rolle in professionellen Workflows, werden aber zunehmend als unterstützende
Werkzeuge eingesetzt.

• Prozedurale Modellierung

Beschreibt die regelbasierte, algorithmische Generierung von Geometrie.
Dieser Ansatz steht im Fokus dieser Arbeit und wird in Kapitel 2.5 ausführlich
behandelt.

6 [5, S. 783].
7 Topologie bezieht sich bei Polygonalen 3D-Modellen auf die explizite Anordnung der
Geometrie. Grundsätzlich ist hierbei das Ziel mit möglichst geringer Polygonanzahl einen
möglichst hohen Detailgrad zu erzielen, also die verwendete Geometrie möglichst
effizient zu nutzen.
8 [5, S. 801].

7

• Photogrammmetrie:

Bezieht sich im 3D-Kontext auf die Übertragung von Objekten der physischen
Welt in die digitale mithilfe von Bildern oder Scans und Photogrammetry
Software. Diese Technik ist besonders relevant für die Erzeugung realistischer
Assets.

• Hybride Workflows:

Innerhalb moderner Produktionspipeline werden häufig verschiedene Verfahren
miteinander kombiniert. Beispielsweise durch die Generierung von Basismodellen
mithilfe von KI oder prozedurale Systeme und anschließende Händische
Überarbeitung9 .

Während es keine genauen Zahlen bzgl. der Nutzung dieser Methoden in der
Videospiel-Industrie gibt, dominiert in der Praxis laut verschiedenen Quellen und
aus eigener Branchenerfahrung weiterhin die manuelle Modellierung, da sie
maximale kreative Kontrolle und unmittelbares Feedback erlaubt10.

Wichtig zu erwähnen sind auch Asset-Packs, die zwar keine Form der Erstellung,
aber dennoch eine zentrale Möglichkeit zur Beschaffung von 3D-Modellen in der
Spieleentwicklung darstellen.
Gerade kleinere Produktionen, die über keine oder wenige dedizierte Artists
verfügen, greifen häufig auf Sammlungen vorgefertigter Assets zurück, die
thematisch und stilistisch aufeinander abgestimmt sind.
Diese Vorgehensweise spart Zeit und Kosten, reduziert jedoch die gestalterische
Freiheit und Individualität der Projekte. Das Vermischen verschiedener Asset-
Packs (Kitbashing) kann dabei ebenfalls schnell zu stilistischen Inkonsistenzen
führen.

Es existieren zahlreiche Wege, 3D-Modelle zu erstellen oder zu beschaffen.
Unabhängig von der gewählten Methode können sich die resultierenden Modelle
in Stil, Detailgrad und technischer Umsetzung stark voneinander unterscheiden.
Im folgenden Kapitel wird die Low-Poly-Ästhetik behandelt, die einen
spezifischen, stark stilisierten Ansatz der 3D-Modellierung beschreibt.

9 [7, S. 120].
10 [7, S. 118].

8

2.3 Low-Poly Artstyle
Unter Low-Poly versteht man im Kern die Verwendung von 3D-Modellen mit
geringer Polygonanzahl. Dabei lassen sich jedoch zwei unterschiedliche
Bedeutungen unterscheiden:

1. Technisches Low-Poly
In der 3D-Grafik werden Modelle häufig in vereinfachter Form eingesetzt,
um Rechenleistung zu sparen und eine flüssige Darstellung zu
gewährleisten. Beispielsweise bei der Verwendung sogenannter Level of
Detail (LOD)-Modelle11, bei denen mit zunehmender Entfernung zum
Betrachter ein Objekt durch eine weniger detaillierte Version ersetzt wird.
Solche Low-Poly-Modelle entstehen also aus Gründen der Optimierung und
dienen primär der Performance-Steigerung.

2. Stilistisches Low-Poly (Artstyle)
Davon abzugrenzen ist der bewusste Einsatz von Low-Poly-Formen als
künstlerische Stilrichtung. Dieser Ansatz hat seine Wurzeln zwar in den
technischen Limitierungen der 1990er-Jahre, wurde aber in den späten
2010er-Jahren bewusst als ästhetische Entscheidung in verschiedenen
Medien wieder aufgegriffen12 und durch Spiele wie „Superhot“(2016), „Poly
Bridge“(2016) oder „Besiege“(2015) im Mainstream verbreitet.

Anders als beim technischen Low-Poly steht hier nicht die Optimierung,
sondern die Stilisierung im Vordergrund. Low-Poly wurde aufgrund der
technisch bedingten Vergangenheit häufig als minderwertig angesehen ist
aber heutzutage mehr als etabliert in der Szene.

Diese Arbeit bezieht sich mit dem Low-Poly-Begriff auf den Low-Poly-Artstyle und
nicht auf den primär technischen bedingten Begriff.

Innerhalb des Low-Poly-Artstyles haben sich verschiedene visuelle Ausprägungen
etabliert, die sich im Grad der Abstraktion, im Umgang mit Farben sowie in der
Detailtiefe unterscheiden. Eine der populärsten Stilrichtungen ist der von Synty
Studios geprägte Low-Poly-Look. Dieser Stil zeichnet sich durch folgende
Merkmale aus:

Flat Shading ohne ausgeprägte Licht- und Materialeffekte, klare, gesättigte
Farben, minimale oder vollständig fehlende Texturen, häufig einfache
Farbflächen, eine cartoonartige, stilisierte Formsprache, reduzierte, aber liebevoll
gestaltete Details, die trotz geringer Polygonanzahl eine hohe Lesbarkeit
gewährleisten

Synty Studios prägt diesen Stil seit vielen Jahren maßgeblich und bietet
umfangreiche Low-Poly-Asset-Pakete in zahlreichen
Themenbereichen an. Diese erfreuen sich insbesondere bei Indie-
Entwicklern großer Beliebtheit und gehören im Unity Asset Store
regelmäßig zu den meistverkauften Paketen. Im folgenden
Kapitel prüfen wir diese Annahmen.

11 [7, S. 123].
12 [8, S. 1].

Abbildung 5: Mit LPTK erstelltes Terrain (eigene Darstellung).

8

9

2.3.1 Gründe für Low-Poly im LPTK
Für die Erforschung der Blender Geometry Nodes bietet sich der Low-Poly-
Artstyle aus mehreren Gründen an. Ein zentraler Aspekt ist die starke in 2.1
beschriebene Relevanz von Unity im Indie-Segment. Wie zuvor dargestellt,
greifen viele kleine Studios und unabhängige Entwickler auf Unity zurück.
Innerhalb des Unity Asset Store wiederum zählen Low-Poly-Assets seit Jahren zu
den beliebtesten und meistverkauften Inhalten (Abbildung 4). Diese Beliebtheit
unterstreicht, dass der Stil im Indie-Bereich weit verbreitet und akzeptiert ist.

Eine Auswertung (Anhang A4) der 100 meistverkauften Assets im Unity Asset
Store (Abbildung 6) zeigt die Relevanz der Low-Poly-Assets.

1. Ring 1: Art-Assets bilden mit
46,0% die größte Kategorie
und spiegeln die höchste
Kaufbereitschaft für
vorgefertigte Inhalte wider.

2. Ring 2: Innerhalb der Art-
Kategorie stellen 3D-Modelle
mit 39,1% die wichtigste
Untergruppe dar.

3. Ring 3: Die entscheidende
Erkenntnis liefert der äußere
Ring: 72,2% dieser
kommerziell erfolgreichen
3D-Assets setzen auf einen
Low-Poly-Look.

Darüber hinaus liegt der
Schwerpunkt im Low-Poly-Stil
stärker auf der Geometrie der
Modelle, während aufwendige
Materialien und komplexe PBR-
Texturen in den Hintergrund treten. Dies macht den Ansatz besonders geeignet
für die Erforschung und Umsetzung prozeduraler Modellierung in Blender
Geometry Nodes. Gleichzeitig reduziert sich dadurch die Fehleranfälligkeit beim
Export in externe Game Engines. Komplexe Shader-Setups, UV-Mapping oder
Materialkombinationen, die häufig zu Problemen führen können, spielen im Low-
Poly-Kontext durch die simplen Materialien eine deutlich geringere Rolle.

Schließlich fließt in die Entscheidung für Low-Poly für das LPTK auch meine
jahrelange Erfahrung im Bereich der Low-Poly-Modellierung ein. Die Vertrautheit
mit den typischen Anforderungen und Workflows ermöglicht es, ein praxisnahes
Werkzeug zu entwickeln, das sich gezielt an den Bedürfnissen von Indie-
Entwicklern orientiert. Zur Erstellung solcher Modelle haben sich, wie in Kapitel
2.2.2 beschrieben, verschiedene Softwarelösungen etabliert.
Eine im Indie-Kontext besonders bedeutende ist Blender, auf die im folgenden
Kapitel näher eingegangen wird.

Abbildung 6: Sunburst-Chart Darstellung der
" Top 100 paid Assets", 30.09.2025 (eigene
Darstellung) Quelle der Daten in A4.

10

2.4 Blender im Indie-Spielentwicklungs Kontext
Blender wurde 1998 veröffentlicht und ist ein generalisiertes 3D-Softwarepaket,
welches eine Vielzahl an Funktionen für unterschiedliche Branchen und
Anwendungsfelder bietet. Besonders seit der Umstellung zur Open-Source Lizenz
im Jahr 2002 wächst Blender stetig und hat besonders in den letzten Jahren
erheblich an Relevanz im 3D-Bereich gewonnen (Abbildung 7).

Dieser Zuwachs lässt sich sowohl durch den breiten Funktionsumfang als auch
durch die niedrige Einstiegshürde und den freien Zugang erklären.

Blender bietet Oberflächen zur Modellierung, Animation, Texturierung, Rigging,
UV-Mapping etc. und deckt die meisten Bedürfnisse an eine moderne 3D-Pipeline
in einem Tool ab. Besonders im Indie-Segment und in kleineren Studios hat sich
Blender als zentrales Werkzeug etabliert13 .
Die Kombination aus Kostenfreiheit, einer aktiven Entwickler-Community und
Integration moderner Werkzeuge, wie der Geometry Nodes macht es zu einer
attraktiven Alternative zu kommerziellen Lösungen.

Gerade für Low- oder No Budget Produktionen ist Blender die einzige Möglichkeit
und spart enorme Kosten. Der Einsatz vom weitverbreiteten Modellierungs- und
Animations-Standard „Autodesk Maya“ verursacht beispielsweise jährliche
Lizenzkosten von 2119 € pro Nutzer14 und ist für kleine Teams ohne Budget
nicht möglich.
Was Blender durch seine Open-Source-Natur im direkten Kundensupport
gegenüber kommerzieller Alternativen fehlt, kompensiert es durch seine sehr
aktive und offene Community. Es gibt zu beinahe jeder Frage eine Antwort oder
ein passendes Tutorial, wodurch die Einstiegshürde sowohl finanziell als auch im
Nutzungskontext deutlich niedriger ist als bei den kostenpflichtigen Alternativen.
Auch für Forschungsprojekte, bei denen Flexibilität, Anpassbarkeit und
Transparenz im Vordergrund stehen, bietet Blender durch seine offene
Architektur klare Vorteile und lässt sich vergleichsweise einfach erweitern,
beispielsweise durch selbst erstellte Python-Skripte oder Addons.

13 [9].
14 [10].

Abbildung 7: Google Trends Such-Interesse Populärer 3D-Programme, Blender Hervorgehoben. Datenquelle: Google
Trends, Suchbegriffe im Zeitraum 01.01.2020 – 24.10.2025 (eigene Darstellung).

11

2.4.1 Blender Add-ons
Blender bietet im „Scripting“-Tab die Möglichkeit, mithilfe der Blender Python API
(bpy)15 Python-Skripte direkt im Editor auszuführen oder eigene Erweiterungen
zu entwickeln. Diese Skripte werden in Form von sogenannten Modulen erstellt
und können bestimmte Funktionen oder komplexe Abläufe automatisieren.

Ein einfaches Beispiel für ein Skript, welches alle Objekte in der aktuellen Szene verschiebt 16 :

1. import bpy # importiert das Blender Python API Modul
2.
3. scene = bpy.context.scene # setzt aktuelle Szene in Blender
4. for obj in scene.objects: # Schleife durch alle Objekte in der Szene
5. obj.location.x += 1.0 # Verschiebung aller Objekte um eine Einheit entlang der X-Achse

Add-ons bauen auf dieser Funktionalität auf. Sie erlauben es mehrere Skripte zu
einer strukturierten Erweiterung zusammenzufassen und ermöglichen eine
direkte Integration in Blenders Benutzeroberfläche. Dadurch können Entwickler
und Technical Artists den Funktionsumfang von Blender gezielt erweitern und an
spezielle Workflows anpassen.

Im Kontext professioneller Workflows sowie spezialisierter Anwendungen stellen
Add-ons ein zentrales Werkzeug zur Erweiterung der Funktionalität von Blender
dar. Community-erstellte Add-ons tragen neben direkten Quellcode-Beiträgen
wesentlich zur kontinuierlichen Weiterentwicklung der Software bei17. Besonders
relevante Open-Source-Add-ons werden mitunter direkt in die
Standarddistribution von Blender integriert und als native Erweiterungen
bereitgestellt, prominente Beispiele sind Add-ons wie LoopTools18 oder der
NodeWrangler19.

Neben Open-Source-Lösungen existiert ein breites Spektrum kommerzieller Add-
ons, die spezifische Anwendungsprobleme lösen und über Drittanbieter
vertrieben werden. Der größte Marktplatz für Blender-Erweiterungen ist
Superhive (ehemals Blender Market), über den eine Vielzahl sowohl
kommerzieller als auch frei verfügbarer Add-ons angeboten wird.

Die Installation von Add-ons ist sehr einfach und kann über das interne
Erweiterungs-Panel von Blender erfolgen, was primär für Open-Source-Add-ons
vorgesehen ist, oder alternativ manuell durch das Einfügen der entsprechenden
Dateien der lokalen Festplatte. Diese Flexibilität erlaubt es Anwendern, die
Softwareumgebung gezielt an spezifische Anforderungen anzupassen.

15 [11].
16 [12].
17 [13].
18 LoopTools, fügt mehrere Modellierungswerkzeuge hinzu:
https://extensions.blender.org/add-ons/looptools/?utm_source=blender-4.5.3-lts.
19 [14].

12

2.5 Procedural Content Generation
Procedural content generation (PCG) in Videospielen beschreibt die
algorithmische Generierung von Spielinhalten (Game-Assets) mit limitiertem oder
indirekten Nutzerinput20.

PCG ist in der Videospiel-Entwicklung weit verbreitet
und bezieht sich auf verschiedenste Arten von
Inhalten. Beispiele für PCG reichen von prozeduralen
Shadern und Materialsystemen, über die
algorithmische Erzeugung von Meshes und
Landschaften bis hin zu kompletten Spielwelten.
Darüber hinaus können beispielsweise auch Musik,
Animationen oder Partikelsysteme durch prozedurale
Verfahren erzeugt werden21.

Seine Ursprünge hat PCG Anfang der 1980er Jahre.
Spiele wie „Rogue“ (1980) und „Elite“ (1984) werden
in diesem Kontext häufig als Vorreiter genannt22.
Damals war PCG und vor allem die prozedurale
Levelgenerierung für openworld-artige Spiele als eine
Art Kompressionstechnik unersetzlich23 . Zur
damaligen Zeit war es unmöglich, große Mengen an
vordefinierten Daten dauerhaft zu speichern. So wären die Entwickler von Elite
nicht in der Lage gewesen acht spielbare Galaxien mit jeweils 256 vordefinierten
Planeten auf der originalen „BBC Micro“-Diskette speichern können.

Seither hat sich PCG zu einem zentralen Bestandteil moderner Spieleentwicklung
entwickelt und findet sich in beinahe allen aktuellen Titeln wieder, wobei die
genaue Implementation und Nutzungsweisen sich komplett voneinander
unterscheiden können.

So nutzt „The Elder Scrolls IV: Oblivion“ (2006) prozedurale Systeme, um die
Spielwelt mit Basis-Vegetation zu füllen, welche im Anschluss manuell von Artists
bearbeitet wird. „Minecraft“ (2009) hingegen generiert seine Spielwelten
vollständig prozedural. Borderlands (2009) wiederum verwendet prozedurale
Generierung um 17 Millionen verschieden Waffentypen mit unterschiedlichen
Eigenschaften zu erzeugen.

Im Zuge dieser Arbeit steht die prozedurale Modellierung im Vordergrund, welche
als eine zentrale Unterkategorie von PCG zu verstehen ist und sich auf die
algorithmische Generierung und Manipulation von Geometrien bezieht.

20 [15, S. 14].
21 [16, S. 62].
22 [15, S. 4].
23 [17, S. 502].

Abbildung 8, Prozeduraler Shader für
Vornoi-basierte Glasmalerei (eigene
Darstellung).

13

2.5.1 Prozedurale Modellierung
Wie in 2.2.2 angesprochen ist die prozedurale Modellierung ein wichtiger Ansatz
zur Geometrieerzeugung im Kontext der modernen Spieleentwicklung24. Im
Gegensatz zur manuellen Modellierung beschreibt sie die Generierung und
Manipulation von 3D-Geometrie auf Basis von definierten Regeln, Algorithmen
und Parametern. Sie erlaubt es, komplexe Strukturen wie Gebäude, Vegetation
oder ganze Landschaften effizient und reproduzierbar zu erzeugen25.

Der Begriff an sich wird für eine Vielzahl unterschiedlicher Methoden und
Systeme verwendet und bezieht sich dabei ebenso auf einfache prozedurale
Modifikationen von handmodellierten Basisgeometrien als auch die automatische
Erzeugung hoch komplexer Terrains.

Die Prozedurale Modellierung hat sich in den letzten Jahren stetig
weiterentwickelt und es wurden verschiedenen Ansätze zur Generation
verschiedener Objektetypen entwickelt. Diese werden dabei aber durch ihre
parametrische und non-destruktive Natur vereint.

Historisch betrachtet, gibt es verschieden Wegweisende Ansätze. Fundamental
sind dabei beispielsweise die 1968 von Aristid Lindenmayer eingeführten L-
Systeme, welche zur Erforschung pflanzlicher Wachstumsprozesse entwickelt
wurden und durch iterative Anwendung einfacher Regeln komplexe Strukturen
erschaffen können26.

In diesem Kontext ebenfalls häufig erwähnt, sind die Shape Grammars, welche
häufig zur Erzeugung räumlicher Geometrien, bspw. im Architektur-Kontext,
verwendet werden27.

Während frühe Implementation überwiegend textuell, skript-oder codebasiert
waren28, haben aktuelle Tools den Fokus zunehmend auf visuelle und oder
nodebasierte Workflows verschoben. Diese ermöglichen es, prozedurale Systeme
interaktiv, modular und zugänglich zu gestalten, stehen in Form von Blender
Geometry Nodes im Fokus dieser Arbeit und werden 2.5.5 genauer eingeführt.

Zunächst werden die Vor- und Nachteile des prozeduralen Ansatzes besprochen.

24 [18].
25 [18].
26 [19, S. 1].
27 [20, S. 615].
28 [21].

14

2.5.2 Vor- und Nachteile prozeduraler Systeme
Prozedurale Verfahren bieten gegenüber der klassischen, manuellen Erstellung
von Assets eine Reihe signifikanter Vorteile.

Sie ermöglichen eine effiziente und skalierbare Generierung großer Mengen an
Inhalten die, wie in 2.2 beschrieben, einen zentralen Kostenfaktor der
Spieleentwicklung darstellen. Ein einmal aufgesetztes System kann theoretisch
unendlich viele Varianten eines 3D-Modells, beispielsweise eines Levels oder
Baumes, erzeugen29.

Darüber hinaus bieten prozedurale Systeme non-destruktive Workflows, bei
denen Änderungen an Parametern jederzeit vorgenommen werden können, ohne
die zugrunde liegende Struktur dauerhaft zu verändern. Dadurch lassen sich
Varianten schnell erzeugen und Anpassungen effizient durchführen.

Trotz dieser Stärken stehen prozedurale Systeme vor verschiedenen
Herausforderungen.

Die Entwicklung eines funktionierenden Regelwerks ist komplex und erfordert
eine sorgfältige Definition der Generierungslogik, um konsistente und ästhetisch
überzeugende Ergebnisse zu erzielen. Zur definiton ist eine Kombination aus
künstlerischer und technischer Kompetenz erforderlich30, wodurch eine große
Einstiegshürde entsteht.

Die manuelle Erstellung eines einzelnen Assets ist im Regelfall schneller als das
Aufsetzen eines komplexen Systems, welches dieses Asset automatisch
generieren könnte. Auch wenn es theoretisch möglich ist, sollte nicht jedes
Asset mit einem prozeduralen System erzeugt werden. Das „Ten Thousands
Bowls of Oatmeal Problem” wird in diesem Kontext häufig genannt und soll
zeigen, dass die unendliche Variation eines uninteressanten Assets, das Objekt
nicht interessanter macht31.

Darüber hinaus neigen PCG-Systeme dazu, wiedererkennbare Muster zu
erzeugen welche von Spielern erkannt werden können. Ebenso schränken sie die
künstlerische Kontrolle ein, da spezifische Änderungen in den meisten System
nicht leicht zu definieren sind.

Trotz dieser Einschränkungen gilt prozedurale Modellierung heute als zentrale
Technologie für skalierbare, wiederverwendbare und effizient produzierte Assets.
Moderne Node-basierte Systeme wie Houdini oder Blender Geometry Nodes
bieten inzwischen Möglichkeiten, diese Verfahren intuitiv zu gestalten und gezielt
mit manuellem Design-Input zu kombinieren. Dieser hybride Ansatz, aus
algorithmischer Generierung und künstlerischer Kontrolle, wird in der Forschung
als „mixed authorship“ bezeichnet und im folgenden Kapitel näher betrachtet.

29 [18].
30 [17, S. 513].
31 [22, S. 3].

15

2.5.3 Automatic Generation versus Mixed Authorship
Für Spiele mit nahezu unendlichen Open-Worlds, wie beispielsweise das bereits
erwähnte Minecraft (siehe 2.5), ist prozedurale Generierung unumgänglich. Diese
benötigen ein Runtime PCG-System. Runtime-Systeme generieren Inhalte
dynamisch auf dem Gerät des Nutzers bevor und/oder während der Spieler das
Programm ausführt und die Welt erkundet. Diese Implementation funktioniert
also ohne nachträglichen Design-Input, muss autonom spielbare Welten
erzeugen und wird in der Literatur als „Automatic generation“ bezeichnet32 .

In der Realität benötigen allerdings nur wenige Spiele diese vollständige
Prozeduralität zur Laufzeit. Die meisten Titel setzen auf vordefinierte Levels,
welche größtenteils händisch von Designern und Artists entworfen und umgesetzt
werden.
Aber auch hier können prozedurale „Design-Time“-
Systeme33 auf eine spannende Weise eingesetzt werden.
Hierbei geben Designer oder Spieler gezielten Input,
welcher durch die prozedurale Logik umgewandelt wird.
In der wissenschaftlichen Literatur, beispielsweise in
Procedural Content Generation in Games (2017), wird
dieses Paradigma als „mixed authorship“
definiert34.

Dieses Prinzip wird in Abbildung 9 beispielhaft
visualisiert. Die Basis ist der nicht
eingefärbte Bereich des Terrains, der
mithilfe der exponierten Parameter des
Systems erzeugt wurde. Die grün
überlegten Meshes sind händisch vom
Designer hinzugefügte Geometrien, welche
dem prozeduralen Base-Mesh als Union-Boolean-
Operation hinzugefügt werden. Die rot überlegten
Meshes sind ebenfalls manuell erstellte Geometrien,
welche dem prozeduralen Terrain (samt der Union-
Meshes) als Difference-Boolean
abgezogen werden. So kann der
Designer aktiv auf das prozedurale
Terrain aufbauen.

Die in 2.5.2 besprochenen Nachteile von begrenzter Kontrolle, inkonsistenter
Qualität und repetitiven Mustern werden hierbei durch die Möglichkeit zur
manuellen Editierung von Designern und Artists mit minimalem Aufwand
umgangen.

32 [15, S. 10].
33 Gegenstück zu Runtime-Systemen. Sie werden während der Level-Erstellung genutzt,
die resultierenden Assets sind zur Laufzeit jedoch statisch.
34 [15, S. 10].

Abbildung 9: Beispielhafte Darstellung des
‚ProceduralTerrain‘ Systems des LPTK mit visualisierten
Boolean-Meshes (eigene Darstellung).

16

2.5.4 Moderne Node-Based-Tools
Für die prozedurale Modellierung haben sich in den letzten Jahren zunehmend
visuelle, Node-basierte Systeme etabliert. Diese ermöglichen es, komplexe
Abläufe nicht ausschließlich über Code, sondern über visuell verbundene
Funktionsblöcke abzubilden. Dadurch können auch Artists und insbesondere
Technical Artists ohne tiefgehende Programmierkenntnisse prozedurale Systeme
erstellen, verstehen, anpassen und erweitern.
Da die meisten prozeduralen Systeme visuelle Ergebnisse erzeugen, sind
technische und künstlerische Aspekte eng miteinander verknüpft35 . Dies hat zur
starken Etablierung Node-basierter Workflows geführt. Vergleichbar mit Shader-
Graph-Systemen, die ebenfalls von einer visuellen Darstellung komplexer
Zusammenhänge profitieren.

Node-basierte Systeme bieten eine Reihe von Vorteilen gegenüber klassischen
Skript- oder Code-basierten Lösungen. Der Aufbau aus einzelnen, modularen
Funktionsknoten ermöglicht non-lineares Arbeiten, einfache Wiederverwendung
von Teilen eines Setups und eine hohe Transparenz im Entstehungsprozess.
Dadurch lassen sich selbst komplexe Beziehungen zwischen Eingabeparametern
und Ausgaben visuell nachvollziehen.

2.5.4.1 Houdini als Industriestandard
Das bekannteste und am weitesten entwickelte System in diesem Bereich ist
Houdini von SideFX.
Houdini gilt in der VFX- und Game-Industrie als absoluter Industriestandard für
prozedurale Modellierung und ist in den meisten großen AAA-Studios im Einsatz.
Das gesamte Programm basiert auf einem Node-Graph-Prinzip, das alle Bereiche
von Geometrieerzeugung über Partikelsimulationen bis hin zu Materialsystemen
miteinander verbindet.
Ein zentrales Merkmal ist die Houdini Engine, welche die direkte Integration
prozeduraler Assets in Game-Engines wie Unreal und Unity ermöglicht36. Dadurch
können Artists prozedurale Assets außerhalb von Houdini kontrollieren,
Parameter anpassen und Änderungen direkt in der Engine sichtbar machen.

2.5.4.2 Spezialisierte Lösungen
Neben Houdini existieren auch einige industrierelevante spezialisierte
Anwendungen, die auf bestimmte Bereiche des PCG-Kosmos fokussiert sind.
Beispiele sind World Machine37 für Terrain-Generierung oder Material Maker38 zur
prozeduralen Material-Generierung. Diese Tools sind zwar leistungsfähig, aber
stark auf ihren jeweiligen Anwendungsbereich limitiert. Generalisten wie Houdini
oder Blender Geometry Nodes bieten eine deutlich höhere Anpassbarkeit und
sind zur Erstellung einer prozeduralen Asset-Library mit Fokus auf Geometrie-
Generierung quasi unumgänglich.

35 [17, S. 513].
36 https://media.sidefx.com/uploads/products/engine/hengine_games_2023.pdf
37 https://www.world-machine.com/
38 https://www.materialmaker.org/

17

2.5.5 Blender Geometry Nodes
Mit der Veröffentlichung von Blender 2.92 (2021) wurden die Geometry Nodes
als Node-basiertes, prozedurales und non-destruktives System zur Erstellung und
Manipulation von Geometrien eingeführt. Sie erweitern das bestehende Modifier-
Konzept von Blender um eine visuelle Programmierebene, in welche Geometrie
über einen Node Graph beschrieben werden kann39.

Einzelne Node Setups können als Modifier Objekten hinzugefügt werden. Die
Objektgeometrie durchläuft dabei den Modifier-Stack von oben nach unten. Jeder
Geometry-Node-Tree kann in diesem Stack wie ein einzelner Modifier auftreten
und erhält über die Group Input Node seine Eingabedaten. Innerhalb des Node-
Trees definieren verschiedene Operation Nodes (z. B. Set Position, Extrude Mesh,
Distribute Points on Faces) die eigentlichen prozeduralen Schritte. Über die Group
Output Node wird die modifizierte Geometrie anschließend zurück an den
Modifier-Stack übergeben.

Abbildung 10: Beispielhafter Node Tree (eigene Darstellung).

Abbildung 10 zeigt beispielhaft, wie die Geometrie des Würfels, auf welchen der
Geometry Nodes Modifier angewendet wurde aus der Group
Input Node in das Socket40 der Set Position Node gezogen
wird. Über diese wird jeder Punkt der Geometrie um einen
Meter entlang der Z-Achse verschoben und anschließend
über die Group Output Node wieder in den Modifier
Stack übergeben. Abbildung 11 visualisiert diese
Veränderung. Der graue Würfel stellt die Geometrie vor
der Set Position Node dar, der orangenen zeigt den
Würfel nach der Operation.

Die in die Group Input Node eingespeiste Geometrie
umfasst dabei mehr als nur die reinen Positionsdaten der
einzelnen Vertices. Sie stellt ein Datenpaket dar, welches
sämtliche Attribute des Objekts wie Materialzuweisungen, UV-
Koordinaten, Normalen oder benutzerspezifische Daten
enthält. Diese Attributebene ist die Basis der
prozeduralen Logik.

39 Innerhalb dieser Arbeit wird während der konkreten Beschreibung der Geometry Nodes
eine Vielzahl an englischen Fachbegriffen verwendet. Um den Lesefluss zu erhalten,
wurde auf eine kursive Markierung dieser Begriffe bewusst verzichtet.
40 Sockets sind die In- und Outputs einer Node.

Abbildung 11: Visualisierung des Effekts der
in Abbildung 10 gezeigten Set Position Node
auf einem Würfel. Grauer Würfel vor,
oranger nach der Set Position Operation
(eigene Darstellung).

18

Abbildung 13: Übersicht der für das LPTK relevanten Datentypen (eigene Darstellung).

2.5.5.1 Das Attribut-Konzept
Um Geometry Nodes genauer zu verstehen, ist das Konzept der Attribute
grundlegend.

Innerhalb der Geometry Nodes sind Attribute ein generischer Begriff zur
Beschreibung eines pro Element gespeicherten
Daten-Blocks41. Attribute sind die Basis der
prozeduralen Manipulation. Sie ermöglichen es
Daten gezielt zu lesen, zu modifizieren und neu zu
schreiben.

Jedes Attribut wird dabei durch vier Komponenten
definiert:

1. Name, eindeutige Bezeichnung
2. Domain
3. Datentyp, Art der gespeicherten Werte
4. Wert, konkreter Wert

Einen Überblick über die verschiedenen Attribute
und deren Komponenten kann man sich im
Spreadsheet machen (Abbildung 12). Betrachtet
man beispielsweise den verschobenen Würfel. Er
besteht aus acht Vertices. Die Set Position Node
arbeitet direkt mit dem positions-Attribut der
einzelnen Vertices. Die beispielhafte Gliederung
des Positions-Attributs des Vertex mit Index 0
(grün markiert) sieht nach der Verschiebung wie folgt aus:

• Name: position (rot markiert)
• Domain: Point (Vertex) (blau markiert)
• Datentyp: Vektor (3D-Vektor) (Implizit durch Wert)
• Wert: (1, 1, 2) (X-, Y- und Z-Position) (gelb markiert)

Verschieden Arten von Geometrie verfügen je nach Domain über verschiedene
Standardattribute. So verfügen Faces beispielsweise über das sharp-face-
Attribut, welches als Boolean gespeichert wird und determiniert, ob ein Face
smooth oder sharp dargestellt werden soll. Points über Positionen, wie die
Vertices des Beispielwürfels.

In Blender 4.5 stehen verschieden Datentypen zur Verfügung, welche innerhalb
des Node Trees über verschieden Farben visuell kodiert werden (siehe Abbildung
13) und welche in ihrer Komplexität stark variieren. Von der Einfachheit eines
Booleans bis hin zur komplexen 4x4 Matrix.

Zentral zum Verständnis dieser Arbeit ist die Unterscheidung folgender
Datentypen:

41 [23].

Abbildung 12: Spreadsheet-Übersicht der Vertex
Domain eines Würfels (eigene Darstellung).

19
 Abbildung 16: Hervorhebung der Vertices mit

zugewiesenem 'HighPoints'-Wert durch Rote
Kugeln (eigene Darstellung).

2.5.5.2 Das Feld-Konzept (Fields)
Die prozedurale Arbeitsweise von Geometry Nodes wird maßgeblich durch das
Feld-Konzept (Fields) ermöglicht. Im Gegensatz zu klassischen Attributwerten,
die als statische Werte pro Geometrieelement gespeichert werden, stellen Fields
Funktionen dar, die einen Wert in Abhängigkeit eines Kontextes generieren42. Ein
Feld repräsentiert somit eine dynamische Berechnung, die für jedes
Geometrieelement (wie einen Vertex, eine Edge oder eine Instanz) ausgeführt
wird, wenn der Node-Tree verarbeitet wird.

Die Formen der Sockets zeigen hierbei an, welche Sockets Fields und welche
regulären Daten sind.

• Kreis: zeigt an, dass ein einzelner Wert erwartet wird, ein Feld kann nicht
verbunden werden.

• Diamant: zeigt an, dass ein Feld erwartet wird, ein einzelner Wert kann
aber angenommen werden.

• Diamant mit Punkt: Zeigt an, dass ein Socket, welches ein Feld annehmen
kann, momentan einen einzelnen Wert annimmt.

Abbildung 13 zeigt eine dynamische Attributzuweisung des
‚HighPoints‘ Boolean Attributs auf der „Point“-Domain. Die
Position-Node liefert dabei für jeden Vertex der Geometrie
einen Wert, dieser wird in diesem Beispiel durch eine
Separat XYZ-Node auf den Z-Wert reduziert. Die Greater
Than Node bestimmt folgend, einen Schwellwert über
welchem Z-Wert (0.000) eine ‚HighPoints‘ Zuweisung
stattfindet.

Wird das Objekt verändert, beispielsweise indem die Vertices
verschoben werden, wird die Attributzuweisung neu evaluiert.

42 https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/fields.html

Abbildung 15: Darstellung der Vertex
Domain des Spreadsheets nach der
'HighPoints' Zuweisung (eigene
Darstellung).

Abbildung 14: Field-basierte Attributzuweisung (eigene Darstellung).

20

2.5.5.3 Entwicklung der Geometry Nodes und Arbeitsumgebung
Auch wenn die Grundkonzepte über die meisten Updates hinweg konstant
bleiben, befinden sich Blenders Geometry Nodes weiterhin in aktiver
Entwicklung. Mit nahezu jeder neuen Blender-Version werden zusätzliche Nodes
eingeführt, bestehende überarbeitet oder deren Funktionsumfang erweitert.
Bereits während der Bearbeitung des Praxisprojekts (Mai – Juli 2025), wurden
mit der Veröffentlichung von Blender 4.5 LTS43 zahlreiche neue und verbesserte
Nodes hinzugefügt, während einige ältere als deprecated markiert wurden.

Geometry Nodes schließen damit die Lücke zwischen klassischer Modellierung
und prozeduralen Systemen und bieten eine zunehmend leistungsfähige und frei
zugängliche Alternative, die insbesondere für Artists und kleinere Studios, bei
welchen Blender ohnehin im Einsatz ist, attraktive Möglichkeiten eröffnet.

Abbildung 17: Geometry Nodes Oberfläche in Blender 4.5 am Beispiel des „Palisade1“-Node Trees
(eigene Darstellung).

Die Darstellung (Abbildung 17) visualisiert, wie der Geometry Node Editor
(zentral unten) prozedurale Logik für das „Palisade“-Objekt (oben rechts)
definiert und das Ergebnis über die Group Output Node in den Modifier-Stack
(unten rechts) übergibt, um die finale Geometrie im 3D-Viewport (zentral oben)
aus der Basis-Kurve zu erzeugen.

43 https://www.blender.org/download/releases/4-5/

21

3. Methodik
Die theoretischen Grundlagen bilden damit das fachliche Fundament dieser
Arbeit. Auf dieser Basis widmet sich das folgende Kapitel der Methodik sowie der
konkreten Zielsetzung des Low-Poly-Tool-Kits (LPTK).

Es beschreibt, wie aus den zuvor erläuterten Anforderungen der
Spieleentwicklung, den Eigenschaften polygonaler 3D-Modelle und den
Potenzialen prozeduraler Verfahren ein spezifischer Ansatz für die Entwicklung
einer prozeduralen Asset-Bibliothek abgeleitet wurde.

3.1 Anforderungen an die entwickelte Asset-Bibliothek
Die zentrale Anforderung an das LPTK lässt sich in einem Satz definieren.

Entwickler mit minimaler 3D-Erfahrung sollen mit Hilfe des LPTKs in der Lage
sein, mittelalterliche Low-Poly-Welten nach ihren Vorstellungen zu erstellen,
diese jederzeit in einem non-destruktiven Workflow anzupassen und
anschließend mit geringem Aufwand in die Game-Engine ihrer Wahl zu
importieren.

Ausgehend von diesem Leitgedanken sowie den in der Literatur von Shaker et al.
(2017, S. 6) beschriebenen „Desirable Properties of a PCG Solution“ ergeben sich
die folgenden spezifischen Anforderungen an das System:

1. Benutzerfreundlichkeit, eine einfache Bedienung, die auch Hobby- und
Solo-Entwicklern den Zugang ermöglicht.

2. Kontrollierbarkeit, ein ausgewogenes Verhältnis zwischen intuitiver Nutzung
und Parametern für Feinjustierungen.

3. Optische Konsistenz, die generierten Assets sollen einen einheitlichen Low-

Poly-Look haben und sich an Synty-Qualität orientieren.

4. Effizienz, eine deutliche Beschleunigung des Workflows im Vergleich zur
herkömmlichen Modellierung.

5. Flexibilität, non-destruktive Anpassungsmöglichkeiten sowie Erweiterbarkeit
durch Dritte mittels zusätzlicher Node Setups.

6. Kompatibilität, einfache Exportierbarkeit der erstellten Modelle in gängige
Game-Engines wie Unity oder Unreal.

Zusätzlich zu den Anforderungen an das prozedurale System soll auch die
zugrunde liegende Software-Architektur des LPTK selbst unkompliziert aufgebaut
und einfach zu erweitern sein.
Um das LPTK zu entwickeln, müssen zunächst die entsprechenden Werkzeuge
ausgewählt werden. Diese Auswahl wird im folgenden Kapitel besprochen.

22

3.2 Auswahl der Werkzeuge

3.2.1 Blender und Geometry Nodes als prozedurale Basis
Zu Beginn des Projekts fiel die Wahl auf Blender Geometry Nodes. Diese
Entscheidung beruhte darauf, dass meine bisherige 3D-Erfahrung auf Blender
basierte und der Einsatz eines vertrauten Werkzeugs es mir erlaubte, mich
unmittelbar auf die Erforschung der Geometry Nodes zu konzentrieren, anstatt
mich in ein anderes Programm einzuarbeiten.

Houdini war mir als Software zwar bekannt, ich konnte aufgrund unzureichender
Erfahrung mit prozeduraler Modellierung aber keine klaren Kriterien benennen,
welche für oder gegen Blender sprechen würden.

Blender bietet, wie bereits in 2.4 beschrieben, zudem Eigenschaften, die es
insbesondere im Indie-Kontext attraktiv machen: Es ist Open-Source, kostenfrei
verfügbar, stark generalisiert und in der Indie-Community sehr verbreitet
(Abbildung 18).

Abbildung 18: What kind of work do you do with Blender? (Datenquelle: 2024 Blender User
Survey)44 (eigene Darstellung).

Houdini hingegen ist, wie in 2.5.4 beschrieben, etablierter Standard für
professionelle PCG-Projekte. Die Nutzung von Houdini erfordert tiefgehendes
technisches Verständnis, wodurch es sich fast ausschließlich an Spezialisten
richtet und deutlich weniger in der Indie-Szene verbreitet ist. Hinzu kommt, dass
kommerzielle Projekte für die Verwendung von Houdini eine kostenpflichtige
Lizenz benötigen, was jedoch häufig nicht in das Budget kleinerer Indie-
Produktionen passt.

3.2.2 Add-on statt Blenders integrierter Asset-Library
Seit Blender 3.0 gibt es in Blender ein integriertes Asset-Library-System45,
welches ermöglicht Objekte, Materialien, Posen oder auch Geometry-Node-
Groups zentral zu speichern und mithilfe einer einfachen Drag-and-Drop-
Oberfläche über mehrere Projekte hinweg zu nutzen.

44 [9].
45 [24].

23

Dieses Library-System ist mittlerweile der Standard für kleinere Asset-Packs und
besonders für klassische Assets wie statische 3D-Modelle, Materialien oder
HDRIs46 eine unkomplizierte Lösung.

Die Vision des LPTK geht jedoch über die reine Wiederverwendung klassischer
Assets hinaus. Das System soll nicht bloß das Platzieren von Inhalten
ermöglichen, sondern den Nutzer gezielt durch den gesamten Erstellungsprozess
bis hin zum Export führen.

Eine Implementierung des LPTK als eigenes Add-on bedeutet zwar einen
erheblichen Mehraufwand, bietet jedoch entscheidende Vorteile und macht den
Unterschied zwischen einem professionell nutzbaren Tool für Dritte und einer
internen Library aus.

Vorteile eines eigenen Add-ons:

1. Mehr Kontrolle über den User-Flow während des gesamten Prozesses.
2. Spezifische Einfügungslogik für unterschiedliche Node Setups (z. B. mesh-

oder curve-basierte Operationen).
3. Übersichtlichere Tooltips und ein konsistentes Interface.
4. Integration der Export-Funktionalitäten, ohne das Interface zu

fragmentieren.

Gerade für weniger erfahrene Nutzer ist die integrierte Asset-Library in Blender
sowohl in der Benutzung als auch in der Installation kompliziert und nicht intuitiv.
Durch ein eigenständiges Add-on lässt sich der Workflow klarer strukturieren,
wodurch das Tool insgesamt zugänglicher und effektiver wird.

46 HDRIs stehen im 3D-Kontext für „High Dynamic Range Environment Textures“

Abbildung 19: Asset Browser UI der LPTK Asset-Library (eigene Darstellung).

24

4. Umsetzung
Das vierte Kapitel behandelt die praktische Umsetzung des beschriebenen
Konzepts. Ziel ist es, zu zeigen, wie prozedurale Low-Poly-Assets mithilfe von
Blender Geometry Nodes und der Blender Python API zu einem funktionalen
Werkzeugsystem, dem LPTK, zusammengeführt werden können. 47

Die Umsetzung gliedert sich in zwei Unterkapitel:

4.1 Geometry Node Trees:
Dieser Abschnitt widmet sich der Konzeption, Struktur und technischen
Umsetzung der prozeduralen Systeme innerhalb von Blender. Anhand
verschiedener Node Setups werden exemplarisch zentrale Konzepte
vorgestellt und erläutert.

4.2 Add-on-Entwicklung:
Aufbauend auf den prozeduralen Systemen beschreibt dieser Abschnitt
die Erweiterung von Blender um eine benutzerfreundliche Oberfläche
und Automatisierungslogik. Mithilfe der Blender Python API wird das
LPTK als Add-on implementiert, um die erstellten Node-Systeme
zugänglich, modular und effizient nutzbar zu machen.

4.1 Entwicklung der Geometry Node Trees
In diesem Kapitel wird die Konzeption und Umsetzung prozeduraler Low-Poly-
Assets mit Blender Geometry Nodes behandelt. Ziel ist es, die grundlegenden
Prinzipien der Systemarchitektur verschiedener Systeme des LPTK zu erläutern
und zu zeigen, wie modulare, nicht-destruktive Workflows für die Asset-
Erstellung umgesetzt werden können.

Es existieren verschiedene Ansätze, prozedurale Generierung in
Produktionspipelines zu integrieren. In vielen Fällen werden solche Systeme als
Zwischenschritt oder Ausgangspunkt genutzt, um wiederkehrende Arbeitsschritte
zu automatisieren. Dieser Ansatz eignet sich vor allem für größere Teams mit
spezialisierten Tools oder Engine-basierten Pipelines.

Das LPTK verfolgt einen alternativen Ansatz. Es richtet sich gezielt an kleinere
Teams oder Einzelentwickler, die in Blender arbeiten und einen direkten,
intuitiven Zugang zu prozeduraler Modellierung suchen. Entsprechend liegt der
Fokus weniger auf komplexer Pipeline-Integration, sondern auf Bedienbarkeit,
Modularität und Stabilität.
Zentral ist dabei die Idee der Non-Destruktivität, jede Veränderung bleibt
reversibel und parameterbasiert steuerbar. Die Arbeit mit den LPTK-Systemen
soll sich soll sich in erprobte Arbeitsabläufe einpassen, vergleichbar mit einem
integrierten Level-Editor, der die Arbeit in Blender erleichtert.

Darüber hinaus wurde bei der Entwicklung der einzelnen Node Trees auf eine
klare, erweiterbare Struktur geachtet, sodass sowohl eigene Anpassungen als
auch spätere Erweiterungen durch erfahrene Nutzer problemlos möglich sind.

47 Selbstbenannte Konzepte werden dabei in einfachen Anführungszeichen
gekennzeichnet.

25

Im Folgenden werden zunächst grundlegenden Konzepte anhand eines einfachen
Beispiel-Assets erläutert. Anschließend wird die Parametrisierung zur Steuerung
der Systeme vorgestellt, bevor vier ausgewählte, konzeptionell unterschiedliche
Implementierungen des LPTK detailliert beschrieben werden.

4.1.1 Erste Experimente
Das Praxisprojekt zu dieser Arbeit stellt meinen ersten tiefergehenden
Berührungspunkt mit Blenders Geometry Nodes und der prozeduralen
Modellierung im Allgemeinen dar. Um ein grundlegendes Verständnis für die
Funktionsweise, Möglichkeiten und Limitationen zu entwickeln, habe ich mich
zunächst primär mithilfe von Online-Tutorials sowie der Analyse bestehender
Systeme beschäftigt.

In dieser explorativen Anfangsphase entstanden verschiedene Node-Trees, von
denen einige als technische Grundlage späterer Systeme dienten. Eines der
ersten Systeme, welches in abgewandelter Form in das LPTK integriert wurde ist
das ‚Funky-Tree‘-System.

Das System basiert auf einem Tutorial48 und verarbeitet freihand
gezeichnete Splines (Kurven) zu stilisierten Low-Poly-Bäume.

Es ist dabei nicht vollprozedural, sondern instanziiert vormodellierte
Äste und Laub auf der gemalten Kurve und fügt dieser einen
konfigurierbaren Radius hinzu.

Die gemalte Kurve wird im ersten Schritt durch eine Resample Curve Node
neu abgetastet und anschließend in drei parallel ausgeführten Node-Gruppen
verarbeitet, deren Ausgaben danach wieder zusammengefügt werden.

Die ‚TopLeaf‘-Gruppe führt eine endpoint selection aus und instanziiert auf
dem obersten Punkt der Kurve das ‚TopLeaf‘-Model.

Die ‚BranchesAndLeafs‘-Gruppe instanziiert entlang der
resample curve in die ‚Branches‘-Collection, welche zwei
Zweig-Varianten enthält.

Währenddessen erzeugt die ‚Trunk‘-Gruppe mithilfe der Set Curve
Radius Node ein Mesh aus der neu abgetasteten Kurve.

Anschließend werden die separat erzeugten Geometrien mit
der Join Geometry Node zu einem Objekt zusammengeführt.
Abbildung 20 auf der folgenden Seite zeigt den Aufbau des
Node-Trees und visualisiert die Ergebnisse der einzelnen Gruppen.

48 [25].

Abbildung 20:Rendering eines
‚FunkyTrees‘ auf einem ‚MeshTerrain‘
(eigene Darstellung).

25

26

Um die prozeduralen Parameter des Systems zu steuern kann der Nutzer
entweder die Form der Kurve im 3D-Viewport anpassen oder die exponierten
Parameter des Systems konfigurieren. Die Parametrisierung von Geometry Nodes
wird im nächsten Kapitel anhand des ‚FunkyTree‘-Systems besprochen.

Abbildung 21: Node-Tree des ‚FunkyTree‘-
Systems mit visualisierten
Verarbeitungsschritten (eigene Darstellung).

Benutzerdefinierte Eingabekurve
(Control Points dargestellt)

Gleichmäßiges Resampling
der Kurve mit Resample Curve

Instanziierung des ‚TopLeaf‘-Modells
am Endpunkt der Kurve

Zusammenführung der
Teilgeometrien durch Join Geometry

Instanziierung der ‚Branch‘-
Modelle entlang der Kurve

Generierung des Stammes
über ‚Curve-to-Mesh‘-Prozess

27

4.1.2 Parametrisierung anhand des ‚FunkyTree‘-Systems
Wie bereits in 3.1 beschrieben, stellt die Kontrollierbarkeit prozeduraler Systeme
eine zentrale Herausforderung dar. Einerseits sollen Nutzer in der Lage sein das
Objekt oder die Geometrie genau nach ihren Vorstellungen anpassen zu können,
ohne in den Geometry Node Editor einsteigen zu müssen, andererseits soll das
System den Nutzer auch nicht mit zu kleinteiligen Konfigurationsmöglichkeiten
erschlagen.

Die meisten Parameter im Node-Tree lassen sich über Sockets durch die Group
Input Node in den jeweiligen Geometry Nodes Modifier, wie in 2.5.5 beschrieben,
exponieren. Damit lassen sich interne Werte zugänglich machen, ohne in den
Node Tree navigieren zu müssen. Beispielsweise kann der Parameter
‚TrunkRadius‘ aus der internen ‚Trunk‘-Gruppe herausgelöst und direkt in den
Group Input Node verschoben werden (siehe Abbildung 22).

Wird ein Parameter in den Group Input gezogen,
erscheint dieser automatisch im Group Sockets Panel des
Node-Trees und wird dadurch konfigurierbar.

Innerhalb des Group Sockets gibt es in Blender die
Möglichkeit, die exponierten Parameter für optimale
Nutzung zu spezifizieren. Es können Eingabedatentyp
definiert, visuelle Gruppen (Panels) erstellt,
Wertebereiche begrenzt, passende Standardwerte
gesetzt und hilfreiche Tooltips eingefügt werden.

In Abbildung 23 ist der ‚TrunkRadius‘-Parameter, des
‚FunkyTree‘ Group Sockets ausgewählt. Die
Konfigurationsmöglichkeiten für diesen Input sind
sichtbar. Der „Type“ zeigt den Datentyp des
‚TrunkRadius‘, die Description ist der Tooltip, welcher
beim Hovern über den Parameter im Modifier angezeigt
wird. Der Subtype bestimmt die Darstellung im Modifier
(Distance = Angabe des Wertes in Metern). Der Default

Abbildung 22: Ausschnitt vom ‚FunkyTree‘-Setup mit Fokus auf der Group Input Node und der ‚Trunk‘-Gruppe
(eigene Darstellung).

Abbildung 23: Group Sockets der "FunkyTree" Group
Input-Node, einseh- und konfigurierbar im Node-Backend
(eigene Darstellung).

28

Parameter bestimmt den Standardwert (0,5 Meter) und die Min- und Max-Felder
definieren den Wertebereich, welchen der User im Modifier definieren kann.

Abbildung 24 stellt die konfigurierten Group
Sockets als kontrollierbare Parameter im
Geometry Nodes Modifier an und ist somit
das Frontend der in Abbildung 23 gezeigten
Konfiguration.

Es existieren unterschiedliche
Herangehensweisen zur Parametrisierung.
Während einige Geometry Nodes Entwickler
beinahe jeden Parameter exponieren,
reduzieren andere die Bedienung bewusst auf
weniger Kernparameter.

Da sich das LPTK explizit an Anwender ohne tiefgehende Kenntnisse zur
prozeduralen Modellierung richtet, wurde stets eine Balance zwischen Kontrolle
und Verständlichkeit bei der Architektur der Systeme angestrebt.

Die ausgewählten Parameter sind zu diesem Zweck mit praxistauglich Werten
vorbelegt und auf sinnvolle Wertebereiche begrenzt. Eine strukturierte
Gruppierung innerhalb der Parameter-Panels, hilfreiche Beschreibungen und
Tooltips erleichtern die Nutzung.

Die Parametrisierung stellt somit einen wesentlichen Faktor für die Nutzbarkeit
und Erweiterbarkeit der gesamten prozeduralen Asset-Bibliothek dar.

Während der Entwicklung sämtlicher LPTK-Assets wurde daher konsequent
versucht, eine ausgewogene Balance zwischen kreativer Kontrolle und
Bedienbarkeit zu erreichen.

Nachdem anhand des ‚FunkyTree‘-Systems die grundlegenden Prinzipien zur
Strukturierung, Modularisierung und Parametrisierung prozeduraler Node Setups
vorgestellt wurden, folgt nun die schrittweise Erweiterung dieser Ansätze auf
komplexere Anwendungskontexte.

Als nächstes wird ein kurvenbasiertes Verfahren zur Pfadgenerierung anhand des
‚StonePath'-Assets erläutert. Analog zum ‚FunkyTree‘, werden auch hier Objekte
anhand einer Nutzerdefinierten Kurve instanziiert, jedoch wurde das System um
einige anwendungsspezifische Funktionalitäten erweitert.

Abbildung 24: Geometry Nodes Modifier des
‚FunkyTree‘-Systems (eigene Darstellung).

29

4.1.3 Kurvenbasierte Pfadgenerieung
Für Assets wie Pfade bietet sich eine dynamische Generierung besonders gut an.
Zwar existieren statische Baukastensysteme, welche die individuelle
Zusammensetzung einzelner, vordefinierter Pfadelemente erlauben, ein
prozeduraler Ansatz, der sich automatisch an unterschiedliche Untergründe oder
Terrains anpasst und einem nutzerdefinierten Pfad folgt, stellt jedoch die deutlich
elegantere und unkompliziertere Lösung dar.

In diesem Kapitel wird die prozedurale Pfadgenerierung anhand des ‚StonePath‘-
Systems erläutert, welches mithilfe von nutzerdefinierten Kurven dynamische
Pfade erzeugen kann, die sich jedem Untergrund anpassen.
Das System ist vergleichsweise simpel, erlaubt es aber, Kurven auf Oberflächen
zu zeichnen, entlang derer in einer definierbaren Breite Steine platziert werden,
sodass ein natürlicher Pfad entsteht.

Zur Erstellung der Kurven wird, wie bereits beim ‚FunkyTree‘-System, das
integrierte Freehand Spline-Werkzeug von Blender verwendet. Dieses ermöglicht
es, Kurven freihand zu zeichnen und direkt auf bestehende Objekte zu
projizieren.
Nach dem Zeichnen der Basiskurve kann der Nutzer den Pfad mithilfe
verschiedener exponierter Parameter non-destruktiv anpassen.

4.1.3.1 ‚Curve to Plane‘
Um Steine entlang eines Pfades zu platzieren, bietet sich die
Instanziierung von Objekten auf einer Fläche an.
Im Gegensatz zum ‚FunkyTree‘-System, bei dem Äste direkt
entlang der vom Nutzer gezeichneten Kurve instanziiert
werden, benötigt der ‚StonePath‘ eine Fläche mit
definierbarer Breite, auf der die Steine verteilt
werden können.

Dafür wird die gezeichnete Kurve im ersten Schritt in
eine Plane umgewandelt, die als Basis für die
Instanzen dient.
Dieser Prozess erfolgt in der Node-Gruppe ‚Curve to Plane‘.

Zunächst wird die Kurve entlang ihrer Normalen um die Hälfte des
nutzerdefinierten Width-Parameters verschoben, welcher die Breite des
späteren Pfades bestimmt.
Anschließend wird sie mithilfe der Curve to Mesh und Extrude Mesh
Nodes in ein Mesh konvertiert und extrudiert, um eine ebene Fläche zu
erzeugen. Durch die Verschiebung um die halbe Breite verläuft die
Mittellinie dieser Fläche exakt entlang der ursprünglichen Kurve.
So entsteht eine flexible, parameterbasierte Grundlage, auf der
die Steine später gleichmäßig verteilt werden können.

Abbildung 26: Darstellung des ‚StonePath‘-Systems
auf einem ‚MeshTerrain‘ (eigene Darstellung). 29

Abbildung 25: 'Curve to Plane'-Gruppe

30

4.1.3.2 Instanziierung und Projektion mit ‚Stones on Surface‘
Nachdem die Kurve in eine Plane überführt wurde, wandert diese optional durch
die ‚Shrinkwrap Plane‘-Gruppe und anschließend in die ‚Distribute Stones on
Surface‘-Gruppe. Diese bimodale Logik wurde implementiert, um sowohl
nutzerdefinierte Assets verwenden zu können, als auch eine vollprozedurale
Alternative zu bieten.

Modus 1: Interne Prozedurale Generierung (maximale Konformität)

Für Projekte, welche keine eigenen Steinkollektionen benötigen (repräsentiert
durch den False-Pfad der Switch Node), wird die Stein-Geometrie prozedural
erzeugt, wodurch eine optimale Projektion erfolgen kann:

1. Punktverteilung: Die Plane wird mittels der Distribute Points on Faces Node
in eine Punktwolke überführt. Diese Punkte können dabei anhand
exponierter Parameter vom Nutzer in der Dichte konfiguriert werden und
stellen die Punkte zur Instanziierung der einzelnen Steine dar.

2. Instanz-Geometrie: Anstelle eines externen Assets wird ein einfaches 3x3-
Grid (eine Plane mit neun Vertices) auf die Punkte instanziiert.

3. Projektionslogik: Die Vertices dieses einfachen Grids dienen als individuelle
Projektionspunkte. Mithilfe der Geometry Proximity Node werden die
nächstgelegenen Positionsdaten des Zielobjekts für jeden Vertex aller
Grids ermittelt. Durch die nachfolgende Set Position Node werden die
Vertices der Grids auf diese ermittelten Positionen verschoben.

Dieser Mechanismus projiziert die Geometrie jeder einzelnen Instanz auf die
Oberfläche, wodurch sich die Steine dynamisch der Krümmung, Neigung und
Höhe des Objekts, bspw. eines Terrains, anpassen und somit eine höchstmögliche
Terrain-Konformität gewährleisten.

Modus 2: Externe Asset-Kollektion (Künstlerische Kontrolle)

Will der Nutzer eine externe Stein-Kollektion als Instanzobjekt verwenden
(repräsentiert durch den True-Pfad der Switch Node), wird die Plane an sich
zunächst als Ganzes auf das Ziel-Terrain projiziert (gewrappt).

1. Technischer Mechanismus: Dies geschieht durch die ‚Shrinkwrap Plane‘-
Gruppe, welche jeden Vertex des Pfades, mithilfe der Geometry Proximity
Node auf das nächstliegende Face der Projizierungs-Geometrie projiziert.

2. Resultat: Anschließend wandert die per Shrinkwrap-Projektion angepasste
Plane ebenfalls in die Distribute Points on Faces Node, wobei in diesem Fall
die erzeugte Punktwolke und die daraus resultierende Instanziierung (in

Abbildung 27: Bimodale Schaltungslogik

31

der folgenden Gruppe) grob der Terrain-Oberfläche folgen. Da die
Instanzen selbst jedoch ihre ursprüngliche Geometrie beibehalten, limitiert
dieser Modus die Detailgenauigkeit der Terrain-Konformität zugunsten der
Verwendung komplexer, manuell erstellter Assets49.

4.1.3.3 ‚Material Manager‘
Die korrekt platzierten Geometrien werden anschließend in die ‚Material
Manager‘-Gruppe übergeben.

Hier erfolgt die Materialzuweisung der einzelnen Steine. Die Logik verwendet eine
Random Value Node, um einen zufälligen Wert für jede Instanz zu generieren.
Dieser Index-Wert wird anschließend genutzt, um über die Set Material Index
Node jeder Instanz eines von drei verschiedenen Materialien zuzuweisen. Die
Farbe der einzelnen Materialien kann hierbei über exponierte Parameter im
Modifier frei konfiguriert werden.

4.1.3.4 ‚Default Stone Extrusion and Deformation‘
Dieser abschließende Verarbeitungsschritt wird nur auf die intern prozedural
erzeugten Steine (Modus 1/False-Pfad) angewandt und dient der Erzeugung von
geometrischer Tiefe und der Brechung der Uniformität.

Extrusion und Skalierung: Die auf das Terrain projizierten, aber noch flachen
Stein-Planes werden mittels der Extrude Mesh Node extrudiert, um ihnen eine
Höhe zu verleihen. Die neue, obere Fläche wird anschließend skaliert, um die
Kanten optisch zu brechen und die Erscheinung eines abgerundeten Steins zu
erzeugen. Die beiden Parameter können hierbei ebenfalls im Modifier frei
konfiguriert werden.

Zufällige Verformung: Die final extrudierte Geometrie wird einer prozeduralen
Deformation unterzogen. Hierfür wird eine Noise Texture Node mit einer Set
Position Node kombiniert. Die Stärke der Verformung wird dabei von einer
Random Value Node bestimmt, welche durch definierbare Min- und Max-Werte
einer Map Range Node gesteuert werden kann.

49 Hierbei ist zu erwähnen, dass das System noch einen zusätzlichen Modus anbietet, welcher die Geometrie der
eingespeisten Objekte analysiert, die Vertices der nach unten gerichteten Faces selektiert und diese auf das
Terrain shrinkwrappt. Bei einfachen Assets kann dieser Ansatz funktionieren, bei komplexeren Stein-Assets
kann dies jedoch zur starken Verzerrung der Steingeometrie führen.

Abbildung 28: Darstellung der Pfadgenerierung in drei Schritten

1. Visualisierung eines Nutzergezeichneten Basispfads (links)
2. Aus Pfad generierte Plane und aus Plane generierte Punktwolke (mittig)
3. Finales Terrain Pfad nach Instanziierung, Projektion, Einfärbung, Extrusion und Verformung der
Grids (rechts)

32

4.1.4 ‚ProceduralTerrain‘
Das ‚ProceduralTerrain‘-System ist das komplexeste System
des gesamten Projekts und wurde von Beginn bis zum
Abschluss des Praxisprojekts kontinuierlich erweitert und
verfeinert.

(Voll-)prozedurale Terrain- und Level-Systeme sind, wie in
2.5 beschrieben, eine der häufigsten Formen von PCG-
Integration in der Spieleentwicklung. Für einen Design-
Time-bezogenen, Mixed-Authorship (in 2.5.3 behandelt)
Workflow aber weniger geeignet. In diesem Kontext sind
Kontrollier- und Erweiterbarkeit weitaus wichtiger als die
Möglichkeit zur unendlichen Generierung.

Das ‚ProceduralTerrain‘ unterscheidet sich deshalb
fundamental von den vollprozeduralen Implementationen
eines Terrain-Systems. Es liefert eine prozedurale
Basisgeometrie, die als Ausgangspunkt oder Inspiration
dient, aber vollständig veränder- und konfigurierbar ist.

Das System ist ein umfangreicher Node Tree mit über 50
konfigurierbaren Parametern. Auf diese
Parameter und die grundlegende
Architektur des Systems werde
ich in diesem Kapitel eingehen.
Die Logik des Systems ist
größtenteils in Reihe geschaltet
und iteriert die Geometrie Schritt
für Schritt.

Abbildung 29: Vereinfachte vertikale
Darstellung des ‚ProceduralTerrain‘-Setups
(eigene Darstellung).

Abbildung 30: Beispiel Rendering eines ‚ProceduralTerrain‘ (eigene
Darstellung).

33

4.1.4.1 Basis-Mesh & Booleans
Die erste Node-Gruppe erzeugt das Basis-Mesh des Terrains. Ausgangspunkt ist
eine einfache Plane, auf die der Geometry Nodes Modifier angewendet wird.
Diese wird zunächst unterteilt (subdivided) und anschließend mithilfe mehrerer
kombinierter Noise Texture Nodes verformt. Über eine Set Position Node werden
die Z-Koordinaten der einzelnen Vertices anhand der noise-basierten Werte
angepasst, wodurch eine prozedural generierte Terrainoberfläche entsteht.

Abbildung 31: ‚ProceduralTerrain‘ Basis-Mesh mit visualisierten Vertices und deren Z-Positionen
(eigene Darstellung).

Für die Verformung stehen drei unterschiedlich konfigurierte Noise-Maps zur
Verfügung, welche über die Presets ‚Default‘, ‚Hills‘ und ‚Plateau‘ abgerufen
werden können.

Das Terrain durchläuft anschließend zwei Mesh Boolean Nodes: zunächst einen
Union Boolean, danach einen Difference Boolean. Beide verwenden
nutzerdefinierte Collections als Input, wodurch zusätzliche Geometrien manuell
auf das Terrain addiert oder daraus subtrahiert werden können.

4.1.4.2 ‚Merge & Triangulation‘
Anschließend wird die Geometrie in die ‚Merge & Triangulation‘-Gruppe geführt.
Hier werden Vertices, welche einen definierten Distanzschwellwert
unterschreiten, zusammengeführt (merged). Dieser Schritt ist essenziell, um die
durch Noise erzeugte mit der vom Nutzer eingefügten Geometrie zu
verschmelzen und unnatürliche Übergänge zu vermeiden.

Abbildung 32: 'BaseMesh & Booleans'- und 'Merge & Triangulation'-Gruppe

34

4.1.4.3 ‚Material Manager‘
Nachdem durch die ersten beiden Node-Gruppen das grundlegende Mesh erzeugt
wurde, wird die Geometrie aufgetrennt und parallel an zwei weitere Gruppen
übergeben.

Der ‚Material Manager‘ übernimmt dabei die Aufgabe, einzelnen Flächen (Faces)
automatisch verschiedene Materialien zuzuweisen. Die Selektion erfolgt zunächst
parametrisch mithilfe mehrerer miteinander verknüpfter Systeme, kann jedoch
bei Bedarf auch manuell angepasst werden.

Standardmäßig umfasst das System vier Materialien: ‚Stone‘, ‚Dirt‘, ‚Grass‘ und
‚TopGrass‘. Die jeweiligen Basisfarben dieser Materialien können direkt im
Modifier-Panel angepasst werden, wodurch der Nutzer sofortiges visuelles
Feedback erhält.

Im ersten Schritt der parametrischen Selektion wird für jede Fläche das
Skalarprodukt zwischen ihrer Normalrichtung und der globalen Z-Achse
berechnet. Dadurch erhält jedes Face einen numerischen Wert im Bereich von −1
(vollständig nach unten gerichtet) bis 1 (vollständig nach oben gerichtet), der
beschreibt, wie stark seine Ausrichtung mit der globalen Z-Richtung
übereinstimmt. Nutzer können dadurch mithilfe der Compare Node
Neigungswinkel-Schwellwerte konfigurieren, um den verschiedenen Faces
entsprechende Materialien zu zuzuweisen.

So lässt sich das Verhältnis zwischen ‚Stone‘, ‚Dirt‘, ‚Grass‘ und ‚TopGrass‘
feinjustieren und an verschiedene Geländetypen anpassen. Darüber hinaus bietet
das System mehrere optionale Zusatzfunktionen:

• Ein höhenbasierter ‚Stone Threshold‘, der die Materialverteilung an die
relative Höhe des Meshes koppelt und so die gezielte Definition bergiger
Regionen in entsprechenden Höhen präziser abbildet.

• Eine ‚Overhang Detection‘, die mithilfe von Raycasts entlang der positiven
Z-Achse erkennt, ob eine Fläche überdeckt ist und die Zuweisung eines
Overhang-Materials erzwingt.

Diese Kombination aus geometrischer Analyse und benutzerdefinierbaren
Parametern ermöglicht eine präzise, visuell stimmige und zugleich prozedurale
Materialverteilung.

Abbildung 33: 'Material Manager'- und 'Polish'-Gruppe

35

4.1.4.4 ‚Water Generation‘
Parallel zur Geometrie im ‚Material Manager‘ wird die Basisgeometrie auch in das
‚Water Generation‘-System übergeben. Die einfachste Möglichkeit, Wasser in ein
Terrain zu integrieren, besteht darin, eine Plane mit einem Wassermaterial über
die gesamte Fläche des Terrains zu legen.
Dieser Ansatz ist jedoch sehr limitiert. Er erlaubt lediglich einen globalen
Wasserspiegel und verhindert die gezielte Deaktivierung einzelner
Wasserbereiche, wodurch es unmöglich ist, eine Schlucht oder Höhle unterhalb
des globalen Wasserspiegels korrekt darzustellen.

Um diese Einschränkung zu umgehen, wurde ein gruppenbasierter Ansatz
entwickelt, welcher eine flexiblere Steuerung und die gezielte Entfernung der
einzelnen Wasseroberflächen anhand ihrer Gruppen ermöglicht.

Bei der Umsetzung traten mehrere Komplikationen auf, wodurch das System
komplex und rechenintensiv wurde. Eine der zentralen Herausforderungen
bestand darin, die relevante Geometrie zu selektieren, um die Punkte einzelner
Gewässer präzise zu gruppieren und anschließend als zusammenhängende
Meshes zu verbinden.

Zur Generierung der Wasseroberflächen werden zunächst die äußeren Kanten der
Basisgeometrie selektiert und entlang der Z-Achse nach oben verschoben, um
eine geschlossene Hülle um die Geometrie zu erzeugen. Anschließend wird diese
Geometrie samt der Hülle mit einer Distribute Points on Faces Node in eine
Punktwolke umgewandelt. Alle Punkte, welche nicht auf
Höhe (Z-Position) des nutzerdefinierten Wasserspiegels
plus dem definierbaren Schwellwert des WaterLevel-
Parameters liegen, werden gelöscht.

Im nächsten Schritt werden die übrigen Punkte
auf eine einheitliche Z-Position verschoben,
wodurch eine saubere, horizontale
Verteilung auf Wasserspiegelhöhe
entsteht (dargestellt als rote Punkte
in Abbildung 35).
Aus dieser bereinigten
Punktwolke wird mit der Points
to Volume Node ein Volumen
erzeugt (blaue Volumen in
Abbildung 35). Dieser Schritt
ist essenziell, durch ihn ist es
möglich, nebeneinanderliegende Punkte zu
einem geschlossenen Volumen zusammenzufassen.
Das resultierende Volumen wird anschließend in ein Mesh
konvertiert.

Abbildung 35: ‚ProceduralTerrain‘ mit visualisierten Punktwolken (rot)
und hervorgehobenen Wasser-Volumen (blau) (eigene Darstellung).

Abbildung 34: 'Water Generation'-Gruppe

36

Diese separaten Meshes lassen sich mithilfe der Mesh Island Node gruppieren.
Über den Radiusparameter der Point to Volume Node lässt sich steuern, welche
Punkte als zusammenhängend interpretiert werden.
Ist der Radius jedoch zu groß, beziehungsweise der Abstand zweier eigentlich
getrennter Gewässer kleiner als der Abstand zu dem nächsten Punkt eines
anderen Gewässers, kann es vorkommen, dass optisch getrennte Wasserflächen
fälschlicherweise zu einer gemeinsamen Gruppe verschmolzen werden.

Nach der Gruppierung werden die einzelnen Mesh Islands in eine Repeat Zone
geführt, welche in ihrer Funktionsweise einer for-loop ähnelt.
Innerhalb dieser Zone können die einzelnen Gruppen separat weiterverarbeitet
werden.
Die Meshes werden erneut mithilfe der Mesh to Points Node in Punktwolken
umgewandelt, auf eine identische Z-Position gebracht, abstands-basiert
zusammengeführt (merged) und schließlich mit einer Convex Hull Node zu
flachen, geschlossenen Wasserflächen zusammengeführt.

Was auf den ersten Blick trivial wirkt, eine distanz-basierte Gruppierung von
Vertices, war in der Praxis erstaunlich herausfordernd.
Ab einem gewissen Grad an Komplexität existieren kaum noch Tutorials oder
dokumentierte Workflows zu Geometry-Nodes.
Es gibt nur wenige wirklich erfahrene Anwender, und noch weniger von ihnen
erstellen didaktisch aufbereitete Inhalte.

Nach ausgiebigen Versuchen mit der Geometry Proximity Node, um eine stabile
Lösung für die Distanz-basierten Gruppierungen zu finden, konnten keinen
konsistenten Ergebnis erzielt werden.
Der hier gewählte Volumen-basierte Ansatz in Kombination mit der Mesh Island
Node war zwar nicht der direkteste, für mich persönlich jedoch der einfachste
und verlässlichste Weg, das gewünschte Verhalten umzusetzen.
Der Ansatz hat letztlich gut funktioniert, auch wenn er in der Umsetzung deutlich
komplexer und rechenintensiver war, als ich ursprünglich geplant hatte.

Rückblickend war das System zwar funktional und technisch interessant, aber für
den eigentlichen Zweck der Operation überentwickelt.

Im weiteren Projektverlauf entstand eine wesentlich einfachere und elegantere,
Boolean-basierte Lösung:
Dabei wird eine leicht herunterskalierte Plane auf die Höhe des definierten
Wasserspiegels gesetzt und das Terrain anschließend über einen Difference
Boolean davon abgezogen.
Das Ergebnis sind dieselben Wasserflächen, welche sich ebenfalls durch
verschiedene Mesh Island Indices ansprechen lassen, jedoch mit einem Bruchteil
der Komplexität. Das ursprüngliche System besteht aus 46 Nodes und eine
Ausführungszeit von ~24ms, das neue besteht aus 8 Nodes und hat bei
derselben Ausgangsgeometrie eine Ausführungszeit von ~6ms. Damit bleibt der
erste Ansatz ein interessantes Experiment, zeigt aber, wie schnell sich
prozedurale Systeme in ihrer eigenen Komplexität verlieren können. Das Beispiel
unterstreicht die Bedeutung funktionaler Effizenz gegenüber technischer Finesse,
wie wichtig es ist, architektonische Entscheidungen kontinuierlich zu hinterfragen
und Vereinfachungen bewusst anzustreben.

37

4.1.4.5 ‚Polish‘
Nach der Materialzuweisung wird die Geometrie an die ‚Polish‘-Gruppe
übergeben. Diese fasst mehrere optionale Funktionen zusammen, die das Terrain
visuell verfeinern und zusätzliche Konfigurationsmöglichkeiten bereitstellen.

‚Extrude Grass‘:
Erlaubt die Extrusion von Flächen mit ‚Grass‘- und ‚TopGrass‘-Material ab einer
definierbaren Mindesthöhe, um gezielt geometrische Tiefe zu erzeugen.

‚Snow‘:
Optional aktivierbares Feature, das ein Schnee-Material auf ausgewählte Flächen
aufträgt.
Parameter wie Mindesthöhe, maximaler Neigungswinkel und optionale Extrusion
des Schnees sind konfigurierbar.
Die erzeugten Schnee- und Gras-Extrusionen können anschließend Subdivided
werden, um sie organisch in die bestehende Geometrie zu integrieren.

‚Scattering‘:
Ermöglicht die Platzierung von Objektkollektionen auf unterschiedlichen
Materialien direkt im ‚ProceduralTerrain‘-System.
Nutzer können Kollektion, Dichte, Skalierung und einen zufälligen
Skalierungsparameter individuell anpassen.

Nach Abschluss dieser Verarbeitungsschritte werden die Terrain-Geometrie und
die parallel erzeugte Wasser-Geometrie über eine Join Geometry Node
kombiniert.
Zum Abschluss wird automatisch eine UV-Map generiert, welche für die
folgenden Systeme, insbesondere das ‚ScatterMeshes‘-System und die
‚ScatterCurves‘, benötigt wird.

Abbildung 36: ‚ProceduralTerrain‘ in drei Schritten

1. Noise-basiertes Terrain (links)
2. Terrain nach Materialzuweisung und visualisierte Booleans (mittig)
3. Finales Terrain nach Wassergeneration und durchlaufen der ‚Polish‘-Gruppe (rechts)
(eigene Darstellung).

38

4.1.5 Erweiterung zum ‚MeshTerrain‘
Das anfänglich Entwickelte und umfangreich beschriebene ‚ProceduralTerrain‘-
System stellt die ursprüngliche Terrain-Implementierung des LPTK dar. Durch das
Prinzip der noise-basierten Basisgeometrie-Generierung in Kombination mit den
nutzerdefinierten Boolean Operationen bietet es große Freiheit bei der
Gestaltung.

Während einer Testphase zeigte sich jedoch, dass die Noise-basierte
Basisgeometrie zwar interessant und für explorative Workflows geeignet ist,
jedoch stört, wenn man ein Terrain nach einer konkreten Vorgabe realisieren und
somit volle Kontrolle behalten möchte. Dabei wurde die noise-basierte
Basisgeometrie häufig auf Höhe Null gesetzt, um eine freiere Gestaltung
ausschließlich mittels der Boolean Geometrien zu erzielen.

Auf Grundlage dieser Erkenntnis wurde das ‚MeshTerrain‘-
System entwickelt. Das ‚MeshTerrain‘ funktioniert im Kern wie
das Procedural Terrain und durchläuft alle im vorherigen
Kapitel vorgestellten Operationsgruppen, mit dem
Unterschied, dass die Basisgeometrie nicht durch Noise
definiert wird, sondern das System direkt auf die
Geometrie des Objekts auf, welches es zugewiesen
wird, verwendet. So kann das ‚MeshTerrain‘ im
Gegensatz zum ‚ProceduralTerrain‘ nicht bloß als
eigenständiges System- sondern vielmehr als eine
Art Post-Processing-Layer für jede Art von Objekt
genutzt werden.

Durch die Entkopplung der prozeduralen Logik ergeben sich
interessante und flexible Möglichkeiten zur Erstellung
und Modifizierung von Objekten.

Die Basisgeometrie kann so durch alle erdenklichen
Methoden erzeugt und prozedural überarbeitet werden. Beispielsweise können
nutzerdefinierte Height Maps oder bestehende Terrain-Assets als

Basisgeometrie genutzt werden.

Ebenso können verschieden manuelle Modellierungstechniken angewandt
werden. Abbildung 37 zeigt, wie ein sehr simples Objekt (Wireframe

orange visualisiert) interessante Geometrien erzeugen kann.

Besonders interessant ist dabei der Ansatz eine sculpting-
basierte Basisgeometrie (Abbildung 38) mit dem
System zu kombinieren. So kann der Nutzer ähnlich
wie bei den kurven basierten Systemen malend die
Geometrie des Terrains beeinflussen.

Die Kombination verschiedener Modellierungsansätze
ist mit prozeduralen Workflows besonders

interessant. Ein UV-basierter Ansatz zum
Scattering wird im folgenden Kapitel besprochen.

Abbildung 37: Mesh-Terrain auf Basis zweier
einfacher Box-Geometrien (eigene Darstellung).

Abbildung 38: ‚MeshTerrain‘ auf durch sculpting
definierter Basisgeometrie (eigene Darstellung).

39

4.1.6 Scattering-Systeme
Scattering-Systeme gehören zu den am häufigsten eingesetzten prozeduralen
Workflows zur effizienten Verteilung großer Mengen wiederholter Elemente wie
Vegetation, Steinen, Pilzen oder kleineren Requisiten. Dabei werden
Objektinstanzen automatisiert oder semiautomatisiert im Raum platziert und
über Parameter wie Skalierung, Rotation oder Dichte regel- und/oder
zufallsbasiert variiert.

Für das LPTK eignet sich ein malbasierter, interaktiver Workflow besonders gut.
Ein solcher Ansatz kombiniert eine hohe gestalterische Freiheit (‚User Authority‘)
mit einer direkten, non-destruktiven und intuitiven Bedienung, sodass der
Arbeitsprozess dem traditionellen Level-Painting ähnelt.

4.1.6.1 Herausforderungen eines Weight-Paint-basierten Ansatzes
Ein gängiger Ansatz zur Instanzverteilung mithilfe von Geometry Nodes nutzt
eine Kombination aus Distribute Points on Faces und Instance on Points Nodes,
wobei die Punktdichte über ein Weight-Attribut gesteuert wird.
Während der Umsetzung eines solchen Workflows zeigten sich im prozeduralen
Low-Poly-Kontext jedoch zwei wesentliche Einschränkungen:

1. Weight-Painting: funktioniert nicht auf unrealisierter Geometrie
Geometry Nodes erzeugen „virtuelle“, d. h. nicht realisierte Geometrie. Auf
dieser kann kein Weight-Painting erfolgen, ohne dass der Modifier destruktiv
angewendet wird, was dem non-destruktiven Grundprinzip des LPTK
widerspricht.

2. Weight-Painting: ist an Vertex-Dichte gekoppelt
Die Auflösung des Weight-Paintings hängt direkt von der Anzahl der
verfügbaren Vertices ab. Da Low-Poly-Assets bewusst mit geringer
Polygonanzahl modelliert werden, ist eine präzise
räumliche Maskierung kaum möglich (siehe
Abbildung 39). Dies führt entweder zu grober
Verteilung oder zwingt zu unnötig hoher
Topologie, was wiederum dem Low-Poly-
Design widerspricht.

4.1.6.2 UV-basiertes Curve-Scattering (LPTK-Ansatz)
Zur Lösung dieser Limitierungen wurde im LPTK ein UV-
basiertes Curve-Scattering-System entwickelt. Es nutzt
die Curve Sculpting-Werkzeuge von Blender (ursprünglich
für Hair-Workflows konzipiert) und kombiniert diese mit
kurvenbasierter Instanziierung in Geometry Nodes.

Dabei können Kurven direkt auf einem Objekt platziert
werden, deren Geometrie innerhalb der Geometry Nodes
genutzt werden kann, um kurvenbasierte prozedurale
Assets wie Bäume, aber auch Standardobjekte zu
instanziieren.

Abbildung 39: Visualisierung von
Weightpainting auf niedrig aufgelöster
Plane. Die Roten Regionen zeigen
Vertices mit Weight 1.0, die blauen mit
weight 0.0. Aufgrund der niedrigen
Auflösung wirkt sich der Weight-Paint auf
die umliegenden Faces aus (eigene
Darstellung).

40

Hauptvorteile des UV-basierten Curve-Scattering-Verfahrens:

1. Topologie unabhängige Präzision
Die Maskierung der Scatter-Bereiche erfolgt im UV-Raum, statt über Vertex-
Daten. Dadurch bleibt die Präzision vollständig erhalten auch bei Low-Poly-
Modellen,

2. Kurven statt Punkte = volle Kontrolle für Kurven-basierte Assets
Jede Instanz basiert auf einer editierbaren Kurve, die nachträglich mithilfe der
Curve Sculpting Brushes transformiert, verlängert, gekrümmt oder gelöscht
werden kann. Kurven-basierte Asset-Systeme wie der in 4.1.1 beschriebene
‚FunkyTree‘ erhalten somit direkt editierbare Kurven als Geometrie-Input,
während statische Assets lediglich den Startpunkt der Kurve zur
Instanziierung nutzen.

Einschränkungen und Anforderungen dieses Verfahrens:

1. UV-Maps sind erforderlich
Das jeweilige Objekt muss UV-unwrapped sein, was einen zusätzlichen Setup-
Schritt zur Automatisierung erfordert. Sobald Mesh-Geometrie hinzugefügt
oder entfernt wird, muss diese neu unwrapped werden. Je nach Topologie
kann dies Auswirkungen auf die Performance des Systems haben.

2. UV-Änderungen wirken sich auf Positionierung der Instanzen aus
Werden Flächen hinzugefügt, entfernt oder verschoben werden UV-Maps neu
unwrapped, wodurch es zur Positionsänderungen der Instanzen kommen
kann. In der Praxis bleibt dies jedoch im Normalfall unkritisch, solange die
Ausgangsgeometrie nicht grundlegend verändert wird.

Im LPTK sind zwei Scattering-Systeme implementiert.

ScatterMeshes

1. Fügt dem Zielobjekt ein „Empty-Hair-Object“ hinzu
2. User kann eigene Mesh-Objekte oder Collections

als Instanzquellen wählen
3. Platzierung erfolgt über Curve Sculpting

Brushes
4. Parameter wie Skalierung und Rotation können

im Modifier angepasst werden

ScatterCurves

1. Funktioniert analog zu
ScatterMeshes

2. Instanziert jedoch Kurven basierte
Assets (z. B. Baumsysteme ‚Birch‘,
‚Pine1‘ oder ‚FunkyTree‘)

3. Editierbare Kurven dienen direkt als
Geometrier Input für prozedurale
Generierung (nicht reduziert auf
Startpunkt)

4. Erweiterbar um weitere Asset-Systeme

Abbildung 40: Darstellung eines ‚ScatterCuves‘-Systems auf welchem
drei "Haare" (Kurven) platziert wurden, welche mithilfe der Hair
Sculpting Brushes angepasst werden können (eigene Darstellung).

41

41

4.2 Entwicklung des Add-ons in Python
Wie bereits in 2.4.1 beschrieben, bestehen Blender-Add-ons aus einem oder
mehreren Python-Skripten, welche in einem ZIP-File zusammengefasst werden
können. In diesem Abschnitt wird die Entwicklung des LPTK-Add-ons
beschrieben. Während die Geometry Node Setups (Kapitel 4.1) den prozeduralen
Kern des Systems bilden, vereint das Add-on diese in einer einheitlichen,
zugänglichen Benutzeroberfläche und stellt die funktionale Verbindung zwischen
Nutzerinteraktion und den zugrundeliegenden Node Setups her.

Das Ziel der Add-on-Entwicklung war es, eine klare, leicht verständliche und
erweiterbare Struktur zu schaffen, sowohl im Frontend (Nutzeroberfläche) als
auch im Backend (Code- und Datenstruktur). Dabei standen Verständlichkeit,
Anpassbarkeit und Stabilität über der formalen Perfektion des Codes.
Das System soll es ermöglichen, dass spätere Erweiterungen, etwa durch neue
Node Setups, oder zusätzliche Funktionen, mit minimalem Aufwand, umgesetzt
werden können.

Die Entwicklung des Add-ons umfasst:

• Die Entwicklung der grundlegenden Struktur zum Einlesen bestehender
Geometry Node Systeme und einfügen dieser in neue Szenen

• Die Entwicklung der Benutzeroberfläche
• Die Implementierung des Game-Engine Syncs
• Die Entwicklung des semi-automatischen Thumbnail-Renderes

Ein Großteil der Implementierung wurde manuell konzipiert, mithilfe KI-
gestützter Prototypen entwickelt und anschließend auf das eigene Verständnis
hin angepasst. Auf diese Weise konnten früh funktionierende Ergebnisse erzielt
werden, die folgend so überarbeitet wurden, dass zu jedem Entwicklungsstand
ein vollständiges Verständnis der Codebasis bestand. Dadurch wurde verhindert,
dass unübersichtlicher oder schwer wartbarer Code entsteht.

Anstelle objektorientierter Muster wurde, wenn möglich, bewusst ein linearer,
klar lesbarer Aufbau gewählt bspw. If/else-Strukturen statt komplexer Klassen.
Dieser Ansatz erleichtert das Verständnis des Ablaufs und vereinfacht zukünftige
Anpassungen und Ergänzungen ohne lange Einarbeitungszeit.

Zunächst wird das Einlesen der einzelnen Node Trees mit einem Skript behandelt.

42

4.2.1 Einlesen der Node Trees
Um die erstellten Geometry Node Setups im Add-on verfügbar zu machen,
werden diese in einer festen Struktur organisiert. Jedes Setup wird in einer
separaten .blend-Datei gespeichert. Dabei trägt sowohl die Datei als auch der
darin enthaltene Node Tree denselben Namen. Alle entsprechenden Dateien
befinden sich im Unterordner ‚/my_geonodes‘, der im Root-Verzeichnis des Add-
ons abgelegt ist.

Zusätzlich enthält das Root-Verzeichnis die Datei ‚geo_nodes.json‘, welche
sämtliche Setups beschreibt. Für jeden Node-Tree werden dort die folgenden
Attribute hinterlegt:

Beispielhafte geo_nodes.json Struktur für das ‚MeshTerrain‘-Asset im LTPK:

1. "MeshTerrain": {
2. "filename": "MeshTerrain.blend",
3. "node_type": "CUBE",
4. "category": "Terrain",
5. "thumbnail": "MeshTerrain.jpg"
6. },

Das Add-on liest diese Datei beim Start ein und überführt die Informationen in
ein Dictionary. Auf diese Weise lassen sich die Pfade zu den Node Trees sowie die
zugehörigen Metadaten flexibel abrufen.

Das folgende Code-Snippet zeigt den Aufbau der Datenstruktur aus der .json-Datei:

1. geo_nodes[name] = {
2. "filepath": os.path.join(geonodes_folder, data["filename"]),
3. "node_type": data["node_type"],
4. "category": data["category"],
5. "thumbnail": data["thumbnail"]
6. if os.path.isabs(data["thumbnail"])
7. else os.path.join(thumbnails_folder, data["thumbnail"])
8. }

Durch diese Vorgehensweise ist es möglich, neue Node Trees einfach durch
Hinzufügen einer .blend-Datei im entsprechenden Verzeichnis, sowie eines
Eintrags in ‚geo_nodes.json‘ in das Add-on zu integrieren, ohne dass
Anpassungen im Quellcode erforderlich sind.

43

4.2.2 ‚Node-Types‘
Wie bereits in 4.2 beschrieben war ein ausschlaggebendes Argument gegen die
built-in Asset-Library von Blender die fehlende Unterstützung für
Kontextabhängige Operationen nach Einfügung eines Assets.

Im Asset-Library-Workflow können einzelne Assets über Drag-and-Drop direkt in
die Szene geladen werden. Dies geschieht jedoch, ohne dass der Nutzer
anschließend in einen spezifischen Arbeitsmodus bspw. Edit-, Shading- oder
Sculpting-Mode überführt werden kann.

Um diese Funktionalität im Add-on bereitzustellen, erhält jeder Geometry Node
Tree einen sogenannten Einfügungskontext. Dieser definiert, auf welcher
Geometrie und mit welcher Initialkonfiguration der Node Tree in die Szene
geladen wird. Nach der Einfügung werden kontextspezifische Instruktionsketten
ausgeführt, die den Nutzer automatisch in die passende Blender-Umgebung
bringen, um das jeweilige Asset unmittelbar weiterbearbeiten zu können.

Um diese Unterscheidung zu definieren, wurde das ‚node_type‘-Konzept
entwickelt über welches zwischen verschiedene Einfügungskontexten der
jeweiligen Node Trees unterschieden werden kann.

Zum jetztigen Zeitpunkt wird unterschieden zwischen: ‚CURVE_LOW‘, ‚PLANE‘,
‚TERRAIN2‘, ‚CUBE‘, ‚GATE‘, ‚CURVE‘ und ‚SCATTER‘, wobei einige Typen von
mehreren Node Trees „genutzt“ werden und andere komplette special-case
Lösungen sind.

Beispielhafte Instruktionen für ‚node_type‘: ‚CURVE_LOW‘:

 1. if self.node_type == "CURVE_LOW":
 2. bpy.ops.curve.primitive_bezier_curve_add(enter_editmode=True,
location=context.scene.cursor.location)
 3. obj = bpy.context.active_object
 4. obj.data.resolution_u = 3
 5. bpy.ops.curve.select_all(action='SELECT')
 6. bpy.ops.curve.delete(type='VERT')
 7. bpy.ops.wm.tool_set_by_id(name="builtin.draw")
 8. settings = context.scene.tool_settings.curve_paint_settings
 9. settings.depth_mode = 'SURFACE'
10. settings.use_stroke_endpoints = True

Wenn das ausgewählte Setup beispielsweise den Typ ‚CURVE_LOW‘ besitzt, wird
zunächst eine Bézier-Kurve an der Position des 3D-Cursors erzeugt und der
Nutzer automatisch in den Edit Mode versetzt. Anschließend werden die
Standardpunkte der Kurve selektiert und entfernt, sodass ein leeres
Kurvenobjekt als Ausgangspunkt entsteht.
Danach versetzt das Skript den Nutzer in den „Draw“-Mode, in dem neue
Kurvensegmente freihändig gezeichnet werden können. Abschließend wird der
„Surface“-Mode aktiviert, wodurch die Kontrollpunkte der Splines direkt auf
vorhandene Oberflächen projiziert werden können, bspw. anderen LPTK-Setups.
Zusätzlich wird die Option „use_stroke_endpoints = True“ gesetzt, sodass nur
der erste Kontrollpunkt der Spline auf einer bestehenden Geometrie platziert
wird.

Praktisch ist das bspw. für die Bäume, bei welchen nur die Wurzel auf den
bestehenden Objekten platziert werden soll, der Stamm aber nicht.

44

4.2.3 ‚Node-Spawning‘
Nachdem die einzelnen Einsetzungs-Kontexte beispielhaft erklärt wurden, gehe
ich nun auf die konkrete Einsetzungsimplementierung der Assets ein.

1. Laden der Node Trees aus den externen Dateien

Zum Importieren von Daten wie Objekten, Materialien oder Geometry Node Trees
eignet sich die „Append“-Funktion. Diese kopiert Daten aus einer Blender-Datei
in ein anderes, ohne dabei eine Beziehung zur originalen Ausgangsdatei
herzustellen.

Sobald der Nutzer im LPTK-Panel (Kapitel 4.2.4) ein Asset auswählt, erhält der
Operator den Dateipfad sowie den Namen des zu ladenden Node-Trees.
Über den Kontextmanager bpy.data.libraries.load() wird die entsprechende
.blend-Datei geöffnet und geprüft, ob der gewünschte Node Tree enthalten ist:

 1. def execute(self, context):
 2. self.report({'INFO'}, f"Spawning {self.node_group_name}...")
 3. try:
 4. with bpy.data.libraries.load(self.filepath, link=False) as (data_from, data_to):
 5. if self.node_group_name in data_from.node_groups:
 6. data_to.node_groups.append(self.node_group_name)
 7. else:
 8. self.report({'ERROR'}, f"Node group '{self.node_group_name}' not found in {self.filepath}")
 9. return {'CANCELLED'}

Dieser Schritt importiert ausschließlich den benötigten Node-Tree, unabhängig
davon, welche weiteren Daten die .blend-Datei enthält.

2. Ausführung des jeweiligen Einfügungskontext (‚Node-Type‘)

Nach dem Import des ausgewählten Node Trees durchläuft das Skript die
‚NodeType‘-Prüfung und führt je nach ausgewähltem Asset eine der definierten If-
Bedingungen aus. In diesen wird wie in 4.2.2 beschrieben immer ein Objekt,
bspw. eine Kurve oder ein Würfel, in die Szene eingefügt und kontextspezifische
Operationen vorgenommen.

10. if self.node_type == "CURVE_LOW": # Node-Types / Einsetzungskontext
11. elif self.node_type == "PLANE":
 …
16. elif self.node_type == "SCATTER":
 …

3. Zuweisung des Geometry Nodes Modifiers

Sobald das korrekte Ausgangsobjekt erzeugt und dem Kontext entsprechend
vorbereitet wurde, wird dem Objekt ein Geometry Nodes Modifier hinzugefügt,
welchem der importierte Node Tree zugewiesen wird.

18. obj = bpy.context.active_object # Auswahl des korrekten, im Node-Type erstellten Objekts
19. obj.name = self.node_group_name # Namenszuweisung des erstellten Objekts
20. modifier = obj.modifiers.new(name="GeometryNodes", type='NODES') # Zuweisung eines
GeometryNodes modifiers
21. if bpy.data.node_groups.get(self.node_group_name):
22. else:
23. self.report({'INFO'}, f"Successfully spawned {self.node_group_name}")
24. return {'FINISHED'}

Um mit diesen Funktionalitäten zu interagieren, wurde eine Nutzeroberfläche
implementiert, dessen Design und Umsetzung im folgenden Kapitel erläutert
werden.

45

Abbildung 41: Nutzeroberfläche des LPTK
(eigene Darstellung).

4.2.4 Nutzeroberfläche
Die Oberfläche des Add-ons lässt sich dank der Blender Python API nahtlos in die
bestehende Blender-UI integrieren. Entwickler haben dadurch Zugriff auf nahezu
alle Bereiche der Software und können diese beliebig anpassen oder erweitern.

Blender bietet unterschiedliche Oberflächen, für
verschiedene Workflows, welche sich individuell anordnen
und konfigurieren lassen. Zentral sind hierbei die
sogenannten Editor Types50 wobei der „3D-Viewport“ den
Arbeitsbereich zur Navigation und Modellierung im
dreidimensionalen Raum bildet. Zur Integration eigener
Add-on-Oberflächen existieren keine klaren Richtlinien.
Der letzte offizielle User Interface Design Guide wurde
2019 mit Blender 2.8 veröffentlicht51. Dennoch haben sich
durch die stetige Entwicklung von Third Party Add-ons in
verschiedenen Kategorien informelle Best Practices und
Designkonventionen ergeben.

Um eine leicht zugängliche und übersichtliche
Nutzeroberfläche zu gewährleisten, benötigt das LPTK
Platz für Vorschaubilder, Knöpfe und Tooltips. Für Add-ons
mit einem Asset fokussiertem Inhalt und vergleichbarem
Funktionsumfang, welche nicht direkt auf bestehende
Blender Funktionen aufbauen, ist die Sidebar52, auch „N-
Panel“ genannt, ein idealer Ort. Hier können
verschiedenste Tools übersichtlich angeordnet und bei
Bedarf einzeln ein- und ausgeklappt werden.

Abbildung 41 zeigt die realisierte Oberfläche des LPTK. Sie
lässt sich im 3D-Viewport über das N-Panel öffnen und ist
in drei separat ein- und ausklappbare Unterbereiche
gegliedert.

1. ‚Asset -Panel‘:
Hierüber können die einzelnen Node Setups in die
Szene geladen werden. Dargestellt werden die
Assets in einem vertikalen Layout mit Vorschaubild
und zughörigem Knopf.
Über Kategorien lassen sich unterschiedliche Asset-
Gruppen ein- oder ausblenden. In Abbildung 41 ist
die Kategorie ‚Plants‘ ausgewählt.

2. ‚Collection Exporter‘:
Darunter befindet sich die Oberfläche des
‚Collection Exporters‘, mit welchem die Assets
kollektionsbasiert exportiert werden können (siehe
4.2.5)

50 Die verschiedenen Editoren können verschiedene Daten des Projekts anzeigen. So lassen sich bspw. im
Timeline-Editor Keyframes einsehen und setzen oder Shader im Shader Editor erstellen.
51 https://developer.blender.org/docs/release_notes/2.80/python_api/ui_design/
52 https://docs.blender.org/manual/en/latest/interface/window_system/regions.html

46

3. ‚Toolbox‘:

Im Unteren Bereich befindet sich die ‚Toolbox‘, welche Platz für verschiedene
Hilfreiche Funktionen bei der Arbeit mit dem LPTK bietet. Zum jetzigen
Zeitpunkt findet sich an dieser Stelle der ‚Mesh Renamer‘, mit welchem
automatisch Objekt- und Mesh-Namen angeglichen werden können.

4.2.4.1 Implementierung der Oberfläche anhand des Asset Panels
Die Umsetzung der Benutzeroberfläche erfolgt über die Klassenstruktur der
Blender Python API und basiert hauptsächlich auf der vordefinierten Panel-
Basisklasse53. Jedes Panel wird als eigene Klasse definiert, die von
bpy.types.Panel erbt. Ein übergeordnetes Panel („LPTK“) fungiert dabei als
Container, dem die drei Subpanels über ihre parent_id zugeordnet werden.
Blender erkennt diese automatisch und rendert sie im N-Panel.

Ein vereinfachter Auszug zeigt den grundlegenden Aufbau:

1. class GEO_PT_panel(bpy.types.Panel):
2. bl_label = "LPTK"
3. bl_space_type = 'VIEW_3D'
4. bl_region_type = 'UI'
5. bl_category = "LPTK"

Jede Panel-Klasse enthält eine draw()-Methode, die beim Rendern der Oberfläche
aufgerufen wird. Darin werden alle UI-Elemente definiert, also Knöpfe, Textfelder
oder Dropdown-Menüs. Im Fall des Asset Panels liest die Methode automatisch
alle verfügbaren Assets aus dem ‚geo_nodes‘-Dictionary (in 4.2.1 erklärt) und
stellt sie im Interface dynamisch dar:

Das folgende vereinfachte Beispiel verdeutl icht das Prinzip:

1. for name, data in geo_nodes.items():
2. layout.template_icon(icon_value=thumbnail[name])
3. layout.operator("geo.spawn", text=name)

Die Schleife erzeugt für jedes gespeicherte Asset ein Vorschaubild und den
zugehörigen Lade-Button. Ein Klick auf den Knopf ruft den Operator ‚geo.spawn‘
(wie in 4.2.3 gezeigt) auf, der das entsprechende Geometry Node Setup in die
Szene lädt.

Das ‚Category‘-Menü, mit dem die angezeigten Assets gefiltert werden können,
wird ebenfalls automatisch aus den in ‚geo_nodes‘ hinterlegten Metadaten
abgeleitet:

1. bpy.types.Scene.geo_spawner_category = bpy.props.EnumProperty(
2. items=get_categories,
3. name="Category",
4. description="Filter assets by category",

Auf diese Weise werden die erweiterbaren Aspekte der Oberfläche dynamisch
erzeugt. Neue Assets erscheinen automatisch im Panel, sobald sie in der JSON-
Datei registriert werden, ohne dass zusätzlicher Code angepasst werden muss.
Neue Panels oder Operatoren lassen sich problemlos durch Ergänzung weiterer
Klassen erzeugen, während der bestehende Code unverändert bleibt.

53 https://docs.blender.org/api/current/bpy.types.Panel.html

47

4.2.5 Integration des Game-Enginge-Syncs
Damit 3D-Modelle in der Spieleentwicklung verwendet werden können, müssen
diese aus der jeweiligen Modellierungsumgebung in die entsprechende Game-
Engine übertragen werden.

Im Blender Geometry Nodes-Workflow bedeutet dies, dass die Modifier zunächst
angewendet, das Objekt anschließend in ein Mesh konvertiert und in einem
gängigen Format (z. B. .fbx) exportiert werden muss.
Dabei geht der non-destruktive Workflow verloren.

Wie in Kapitel 2.5.4 beschrieben, bietet der Industriestandard Houdini mit der
eigenen Houdini Engine eine direkte Integration prozeduraler Systeme in Game
Engines wie Unity und Unreal.
Diese enge Verknüpfung bietet einen unkomplizierten Workflow dar, da die
prozedural generierten Assets non-destruktiv und in Echtzeit innerhalb der Game
Engine angepasst werden können. Ein erneuter Export oder Import der
Geometrie entfällt vollständig, was die Non-Destruktivität des Workflows erhält
und Iterationszeiten sowie Fehleranfälligkeit deutlich reduziert.

Blender bietet keine native Integration der Geometry Nodes in gängige Game
Engines, was damit zusammenhängt, dass dafür spezielle Schnittstellen
entwickelt werden müssten, welche auf proprietären Systemen kommerzieller
Engines aufbauen würden, was für eine Open-Source Projekt unpassend wäre.

Es existieren jedoch einige Third-Party-Ansätze, die versuchen, diese Lücke zu
schließen. Zu den bekanntesten zählen Altermesh für die Unreal Engine sowie
BEngine, welche sowohl Unity als auch Unreal unterstützt.
Beide Werkzeuge ermöglichen eine eingeschränkte Synchronisierung von
Geometry Node-Systemen zwischen Blender und der jeweiligen Game Engine mit
der Möglichkeit die in Blender exponierten Parameter direkt anzupassen, ohne
erneuten Ex- und Import.
Da es sich hierbei jedoch um kleine, unabhängige und kommerzielle Projekte
einzelner Entwickler handelt, ist ihre Langzeitstabilität stark von Updates der
Engines und von Blender selbst abhängig.

Zum jetzigen Zeitpunkt scheint Altermesh nicht mehr unterstütz zu werden
(letztes Update am 21. Mai 2024, ohne weitere Kommunikation seitens des
Entwicklers auf dem offiziellen Discord-Server). Der Entwickler der BEngine
hingegen engagiert sich noch aktiv mit der Entwicklung des Tools und geht auf
Nutzerfeedback und spezifische Probleme ein.
Jede neue Version kann jedoch zu Komplikationen führen und das Risiko für eine
Ende der Unterstützung seitens der Entwickler ist hoch. Außerdem führt das
Aufbauen auf bestehende thrid-party Lösungen zu weiterem Installationsaufwand
und ggf. mehr Kosten seitens der LPTK-Nutzer. Deshalb habe ich mich bewusst
gegen die bestehende Lösung von Externen als Synchronisations-Tool
entschieden. Dennoch war klar, dass für ein nutzbares Werkzeug ein non-
destruktiver, einfacher und schneller Workflow unersetzlich ist, weshalb eine
eigene Lösung, der ‚Collection Exporter‘ entwickelt wurde, welcher im nächsten
Kapitel behandelt wird.

48

4.2.5.1 Collection Exporter
In Game-Engine-Umgebungen sind Assets typischerweise in Ordnerstrukturen
organisiert, wobei die 3D-Modelle in spezifischen Unterordnern abgelegt werden.
Standardmäßig werden die Modelle manuell über das Export-Menü in gängigen
Formaten wie .fbx oder .gltf in den entsprechenden Ordnern gespeichert. Dieser
manuelle Workflow ist jedoch zeitaufwendig, potenziell destruktiv und
fehleranfällig, insbesondere bei komplexen Szenen mit vielen Objekten oder bei
häufigen Iterationen während der Entwicklungsphase.

Kollektionen54 sind ein Werkzeug zur Organisation
in Blender. Sie funktionieren ähnlich wie Ordner
und ermöglichen es, verschiedene Objekte logisch
zu gruppieren, ohne diese in eine
Transformationsbeziehung zu stellen (im
Gegensatz zum Parenting). Diese Kollektionen sind
die Basis der implementierten Export-Logik.

Abbildung 42 zeigt eine einfache
Kollektionsstruktur, hierbei wurden drei
Kollektionen angelegt und mit verschiedenen
Objekten gefüllt, um diese logisch voneinander zu
trennen.

Um einen möglichst einfachen und non-destruktiven
Iterationsworkflow zu bieten, wurde der ‚Collection
Exporter‘ entwickelt, welcher sich direkt im Add-on-
Panel des LPTK befindet.

Über ihn können Kollektionen innerhalb der Blender-
Szene einem beliebigen Pfad zugewiesen werden, wie
in Abbildung 43 dargestellt.

Formatspezifische Exporteinstellungen können über
das Zahnrad konfiguriert werden. Zum Anlegen neuer
Kollektionen im Export-Workflow können diese über
den „Add Collection“-Knopf hinzugefügt werden.
Drückt der Nutzer den „Start Export“-Knopf, wird die
zentrale Methode des Exporter-Skripts ausgeführt
und die Objekte der zugehörigen Kollektionen in die
entsprechenden Verzeichnisse exportiert.

Die Implementierung des ‚Collection-Exporters‘ wird
im folgenden Kapitel besprochen.

54 https://docs.blender.org/manual/en/latest/scene_layout/collections/collections.html

Abbildung 43: ‚Collection Exporter‘-Panel
innerhalb des LPTK Add-ons (eigene Darstellung).

Abbildung 42: Beispielhafte Darstellung einer
Kollektionsstruktur im Outliner (eigene Darstellung).

49

4.2.5.2 Implementierung der Export-Logik
Die Export-Funktion iteriert über alle vom Nutzer definierten ‚Collection-Entries‘,
verarbeitet deren Inhalt und exportiert die überarbeiteten Meshes in das
gewünschte Zielformat. Der Workflow bleibt dabei vollständig non-destruktiv, da
ausschließlich temporäre Objektkopien genutzt werden. Die folgenden Schritte
fassen die grundlegende Funktionsweise zusammen:

1. Duplikation der Export-Objekte

Für jedes Objekt wird zunächst überprüft, ob es einen exportierbaren Typ besitzt
(„MESH“, „CURVE“ oder „FONT“) Anschließend wird eine temporäre Kopie
erzeugt. Dies stellt sicher, dass der Exportprozess die Ursprungsobjekte nicht
verändert.

233. for obj in collection.objects:
234. if obj.type in {'MESH', 'CURVE', 'FONT'}:
235. dup = obj.copy()
236. dup.data = obj.data.copy()

2. Konvertierung der Objekte in ein Mesh

Anschließend werden die zugelassenen Objekte in ein Mesh konvertiert, dabei
werden die Geometry Nodes Modifier angewandt und die prozedural erzeugte
Geometrie realisiert.

243. bpy.ops.object.convert(target='MESH')

3. ‚Vertex Color Baking Automation‘

Falls vom Nutzer aktiviert, wird folgend ein automatisierter Bake-Prozess
ausgeführt, der die Materialfarben in ein Vertex-Color-Attribut überträgt (wird im
folgenden Kapitel besprochen).

4. Export an den spezifizierten Pfad

Danach wird das Objekt anhand seines Namens und dem in der ‚Export
Collection‘ definierten Pfades exportiert, dabei werden die in den
Exporteinstellungen festgelegten Parameter berücksichtigt (Forward Axis etc.).

5. Entfernung der Duplikate aus der Datei

Abschließend wird das temporäre Duplikat vollständig aus der Szene entfernt,
sodass der Nutzer ohne Veränderung an seinem Projekt weiterarbeiten kann.

275. bpy.data.objects.remove(dup, do_unlink=True)

Das Ergebnis ist eine Reihe einzelner FBX-Dateien im definierten Zielordner,
während die originale Blender-Datei unverändert bleibt. Nutzer können durch
diesen Workflow mit einem Knopf ihre Game-Engine Umgebung mit ihrer Blender
Szene synchronisieren.

50

4.2.5.3 ‚Vertex Color Baking Automation‘
Wie in Kapitel 2.3 gezeigt, verzichtet der Low-Poly-Artstyle zwar häufig auf
komplexe Materialien, dennoch können einfache Farbverläufe oder leichte
Variationen die visuelle Qualität deutlich erhöhen (siehe Abbildung 44). Solche
Gradients werden in Blender typischerweise über Shader erzeugt, die jedoch von
Game-Engines nicht direkt übernommen werden können. Um den Effekt zu
übertragen, müssten die Materialien entweder in der Engine nachgebaut oder als
Textur mit korrekt erstellten UV-Maps exportiert werden. Beides manuelle und
destruktive Arbeitsschritte, die dem non-destruktiven LPTK-Workflow
widersprechen.

Um einfache Materialeffekte dennoch automatisiert exportieren zu können, wurde
innerhalb des ‚Collection Exporters‘ eine Vertex-Color-Baking Automation
integriert. Vertex Colors werden direkt im Mesh gespeichert und können ohne
zusätzliche Materialien von allen gängigen Game-Engines verwendet werden.

Wird Vertex Color Baking in den Exportoptionen
aktiviert, durchläuft jedes exportierte Objekt nach der
Mesh-Konvertierung den folgenden Ablauf:

1. Erstellen des Vertex-Color-Attributs

Auf der Face Corner Domain wird ein neues Farb-
Attribut erzeugt. Existiert dieses bereits, wird es
überschrieben.

2. Konfiguration der Bake-Einstellungen

Das Skript wechselt in die Cycles-Renderengine,
aktiviert den Diffuse Bake und setzt „Vertex-
Colors“ als Ziel. Direkte und indirekte
Beleuchtung werden deaktiviert, sodass
ausschließlich die Materialfarbe gebacken wird.

3. Bake-Prozess

Die Farbinformationen werden in das Vertex-Color-Attribut
geschrieben.

4. Ersetzen des Materials

Abschließend wird das Ursprungsmaterial auf dem
temporären Objekt durch einen einfachen Diffuse-
Shader ersetzt, welcher das gebackene Vertex-Color-
Attribut als Base Color verwendet. Dieses Setup kann von gängigen Game-
Engines direkt interpretiert werden.

Dieses Verfahren ermöglicht einen vollständig automatisierten und non-
destruktiven Export von einfachen Farbvariationen, ohne dass UV-Maps oder
Texturen erstellt werden müssen. Gerade im Low-Poly-Kontext stellt dies eine
schnelle Möglichkeit dar, Farbvariationen aus Blender in Game-Engines konsistent
zu übertragen.

Abbildung 44: Gegenüberstellung zweier
gleicher Tannen, links ohne Farbverlauf,
rechts mit Farbverlauf (eigene Darstellung).

51

4.2.6 Entwicklung des ‚Thumbnail-Renderers‘
Wie in den vorherigen Kapiteln beschrieben, ist die einfache Erweiterbarkeit des
LPTK ein zentrales Ziel. Die Kombination aus der klaren Ordner- und JSON-
Struktur (siehe 4.2.1) und dem dynamisch generierten Asset-Panel (siehe 4.2.4)
ermöglicht eine unkomplizierte Integration neuer Node Setups.
Damit diese neuen Assets nicht nur funktional, sondern auch visuell konsistent in
der Benutzeroberfläche eingebunden werden, wurde ein separater, semi-
automatischer ‚Thumbnail-Renderer‘ entwickelt. Dieser ermöglicht die Erzeugung
einheitlicher Vorschaubilder für alle Node Setups.

Der Renderer ist vollständig in einer separaten Blender-Datei implementiert, die
unter „thumbnailRenderer.blend“ im Root-Verzeichnis des Add-ons abgelegt ist.
Diese Datei enthält eine vorkonfigurierte Szene, bestehend aus:

• einer Kamera mit fixer Perspektive,
• einer Beleuchtungssituation,
• sowie einer dafür vorgesehenen Kollektion namens ‚GeoNodes‘, in welche

alle zu rendernden Assets platziert werden.

Neben dem 3D-Viewport befindet sich in der Datei ein geöffneter Text-Editor, der
ein Python-Skript enthält. Dieses automatisiert den gesamten Rendervorgang.
Beim Ausführen des Skripts werden alle Objekte der ‚GeoNodes‘-Kollektion
nacheinander aktiviert, gerendert, im Thumbnail-Ordner mit ihrem Namen
gespeichert und deaktiviert.

Die zentrale Funktion findet in diesem Code-Ausschnitt statt:

 1. # Alle Objekte in der Kollektion werden für das Rendering deaktiviert
 2. for obj in geo_collection.objects:
 3. obj.hide_render = True
 4.
 5. for obj in geo_collection.objects:
 6. # Aktuelles Objekt wird aktiviert
 7. obj.hide_render = False
 8.
 9. # Pfad für die Ausgabe setzen.
10. output_path = os.path.join(output_dir, f"{obj.name}.jpg")
11. scene.render.filepath = output_path
12.
13. # Rendern und speichern.
14. bpy.ops.render.render(write_still=True)
15. print(f"Rendered and saved: {output_path}")
16.
17. # Aktuelles Objekt wird deaktiviert
18. obj.hide_render = True

So kann das Thumbnail-Verzeichnis einfach und einheitlich aktualisiert werden,
wenn sich Änderungen an bestehenden Setups ergeben oder neue hinzugefügt
werden.

Da es sich um ein fortgeschritteneres Feature handelt, wurde dieses nicht direkt
in der UI implementiert. Für Entwickler mit diesem Anspruch ist dies aber ein
einfacher und zugänglicher Weg.

52

5. Empirische Evaluation
Nachdem die konkrete Umsetzung des LPTKs besprochen wurde, erforscht dieses
Kapitel das Potenzial einer prozeduralen Low-Poly-Asset-Bibliothek im Kontext
der Spieleentwicklung. Dabei wurde das LPTK im Rahmen einer Nutzerevaluation
getestet. Ziel war es, Bedienbarkeit, Effizienz und Ergebnisqualität des Systems
im Vergleich zu einem rein manuellen Workflow zu analysieren und zu bewerten,
inwiefern das LPTK den Gestaltungsprozess erleichtert und qualitativ verbessert.

5.1 Aufbau und Methodik
Die Untersuchung wurde mit fünf Teilnehmern durchgeführt, die einen
zielgruppenorientierten Querschnitt potenzieller Anwender abbilden sollten.
Die Zusammensetzung war wie folgt:

• 2 Teilnehmer ohne Vorerfahrung in 3D-Modellierung oder
Spieleentwicklung

• 2 Teilnehmer mit grundlegender Blender-Erfahrung und professioneller
Erfahrung in der Spieleentwicklung

• 1 Teilnehmer mit professioneller Erfahrung in der Erstellung stilisierter
Low-Poly-Assets in Blender

Jede Testperson erstellte in zwei Durchläufe dasselbe Level-Szenario, basierend
auf einer vorgegebenen, händisch gezeichneten Referenzskizze (Anhang A7).
Einmal mit Blender ohne Add-on und einmal mit Blender in Kombination mit dem
entwickelten LPTK. Anschließend wurde das Level in beiden Szenarien in die
Godot-Engine importiert.

Die Tests wurden einzeln durchgeführt und begleitet. Während die
Einführungsphasen angeleitet wurden, erfolgte die Bearbeitung beider Szenarien
selbstständig. Technische Rückfragen wurden in beiden Durchläufen beantwortet,
ohne die inhaltliche Lösung vorzugeben. Die durchschnittliche
Durchführungsdauer betrug circa 70 Minuten.

Evaluationsablauf:
Evaluationsschritt Dauer
Einweisung in Blender ~10 min
Terrainerstellung ohne Add-on ~15 min
Export + Import nach Godot ohne Add-on ~5 min
Terrainerstellung mit LPTK ~15 min
Export + Import nach Godot mit LPTK ~5 min
Fragebogen ~5 min
Qualitatives Kurzinterview ~5 min

Der Fragebogen wurde mithilfe von Google Forms umgesetzt und bestand aus
vier Abschnitten. Zunächst wurde die Vorerfahrung der Teilnehmer erhoben.
Anschließend bewerteten die Tester den Workflow der Terrain-Erstellung einmal
ohne und einmal mit dem LPTK. Darüber hinaus stand ein Freitextfeld zur
Verfügung, in dem die Teilnehmer angeben konnten, welche Aspekte des LPTK
ihnen besonders positiv oder negativ aufgefallen sind. Abschließend wurde ein
auf die Vorerfahrung der Teilnehmer angepasstes Kurzinterview durchgeführt um
die Nutzererfahrung vertieft zu besprechen.

53

5.2 Quantitative Ergebnisse

Abbildung 45 zeigt die Selbsteinschätzung der Teilnehmer auf einer 5-stufigen
Likert-Skala hinsichtlich ihrer Erfahrung mit 3D-Modellierung, Blender als
Software und prozeduraler Modellierung. Die Stichprobe weist durchschnittlich
niedrige bis moderate Erfahrungswerte auf, insbesondere im Bereich prozeduraler
Modellierung (Ø 1,4), ist jedoch in anderen Bereichen individuell stark
durchmischt. Die Blendererfahrung bildet bspw. Werte von 1 bis 5 ab. Diese
Zusammensetzung entspricht der angestrebten Zielgruppe des LPTK und bildet
eine geeignete Grundlage für die Bewertung der Nutzbarkeit des Systems.

Abbildung 45: Nutzer-Evaluation, Selbsteinschätzung relevanter Vorerfahrung (eigene Darstellung).

54

Die quantitativen Ergebnisse, dargestellt in Abbildung 46, zeigen ein klares
Muster. Die Einfachheit der Nutzung und speziell die Zufriedenheit mit den
Ergebnissen bewerten die Tester mit dem LPTK deutlich höher. Während die
Zufriedenheit mit Blender bei Ø 2,2 liegt, wurde sie mit dem LPTK mit Ø 3,8
bewertet. Die Einfachheit der Umsetzung bewerteten die Teilnehmer mit dem
LPTK mit Ø 3,4, mit Blender hingegen nur mit Ø 2,6. Bei der gefühlten Kontrolle,
welche die Tester über das Terrain hatten, liegen Blender und das LPTK mit Ø 3,0
gleich auf. Nur bei der Intuitivität des Workflows schneidet das LPTK mit Ø 2,6
minimal schlechter als Blender mit Ø 2,8 ab.

Abbildung 46: Quantitativer Vergleich der
Nutzererfahrung des LPTK (eigene Darstellung).

55

5.3 Qualitative Ergebnisse
Das qualitative Feedback aus dem Freitextfeld (Anhang A5) sowie den
abschließenden Kurzinterviews (Anhang A6) liefert eine vertiefte Einsicht in die
Nutzererfahrung mit dem LPTK.

Besonders positiv hervorgehoben wurden die kurvenbasierten Assets, die sich
direkt in die Szene „malen“ lassen. Das einfache Zeichnen von Bäumen, Pfaden
und Efeu wurde von mehreren Teilnehmern ausdrücklich gelobt und als deutlich
intuitiver und flexibler beschrieben als herkömmliche, statische, Asset-Workflows.
Insbesondere die erfahreneren Entwickler betonten, dass dieses
Interaktionsprinzip eine wesentlich natürlichere und effizientere Gestaltung
ermöglicht.

Ein wiederkehrendes Thema war die sofortige visuelle Qualität der
Ergebnisse. Testern gefiel, dass Formen „direkt gut aussehen“, automatisch
passende Materialien zugewiesen werden und das System damit bereits in
nach wenigen Arbeitsschritten ästhetische und stimmige Resultate
liefert, so konnten auch Tester ohne Modelliererfahrung
überzeugende Ergebnisse erzielen (Abbildung 47 und 48, weitere
Resultate im Anhang A2). Außerdem betonten die Tester,
dass aufgrund der schnellen Ergebnisse, „die
Arbeit mit dem LPTK mehr Spaß macht“.

Gleichzeitig zeigte das qualitative Feedback auch
klare Verbesserungspotenziale am LPTK. Das
‚ProceduralTerrain‘-System war zentral zur
Modellierung der Szene und wurde von einigen Teilnehmern
als „unintuitiv“ und „kompliziert“ beschrieben. Insbesondere der
Boolean-basierte Workflow war für die Tester, die mit dem Konzept
nicht vertraut waren, schwierig zu kontrollieren und
es kam bei einigen zu Problemen und Unsicherheiten.
Einige Nutzer bevorzugten daher das alternative
‚MeshTerrain‘, welches als wesentlich kontrollierbarer
und vorhersehbarer wahrgenommen wurde.

Auffällig ist, dass viele der kritischen Punkte nicht auf das LPTK
selbst, sondern auf Blender als Entwicklungsumgebung
zurückgeführt wurden. Mehrere Tester gaben an,
dass sie weniger durch das Toolkit, sondern
vielmehr durch fehlendes Blender-Vorwissen, auf
welchem das LPTK teilweise aufbaut, eingeschränkt
wurden. Dies deutet darauf hin, dass das LPTK zwar einen
niedrigschwelligen und benutzerfreundlichen Ansatz bietet, jedoch
weiterhin an die Komplexität Blenders gebunden
bleibt.

Zusammenfassend bestätigen die qualitativen
Rückmeldungen, dass das LPTK die kreative Arbeit deutlich erleichtert, ästhetisch
hochwertige Ergebnisse ermöglicht und insbesondere durch seine

Abbildung 47: Zeigt das Ergebniss der
Modellierung der Referenzskizze eines Test-
Nutzers mit dem LPTK (eigene Darstellung).

Abbildung 48:Zeigt das Ergebnis der
Modellierung der Referenzskizze eines Test-
Nutzers ohne das LPTK (eigene Darstellung).

56

kurvenbasierten Interaktionswerkzeuge überzeugt. Gleichzeitig zeigen die
Aussagen der Tester, an welchen Stellen eine Weiterentwicklung sinnvoll wäre.

6. Diskussion
Die Diskussion gliedert sich in drei Abschnitte, die gemeinsam darauf abzielen,
die in Kapitel 1 formulierte Forschungsfrage unter Berücksichtigung der zentralen
Untersuchungsbereiche zu beantworten.

Zunächst wird das LPTK als konkreter Entwicklungsansatz kritisch reflektiert,
wobei Stärken, Schwächen und mögliche Erweiterungen des Systems
herausgearbeitet werden.

Im Anschluss werden die technischen Möglichkeiten und Grenzen von Blender
und den Geometry Nodes als Grundlage prozeduraler Assetgenerierung sowie
deren Einbindung in eine Add-on-basierte Interaktionsoberfläche diskutiert.

Abschließend wird der Ansatz prozeduraler Assets im Kontext der
Spieleentwicklung allgemein bewertet, um die gewonnenen Erkenntnisse in einen
größeren fachlichen Zusammenhang einzuordnen.

6.1 LPTK als entwickelter Ansatz
Die Entwicklung des LPTK zeigt, dass der Ansatz einer benutzerorientierten
prozeduralen Asset-Bibliothek grundsätzlich funktioniert und die prozedurale
Arbeitsweise einen merkbaren Mehrwert liefern kann.

Der Post-Processing Mixed-Authorship-Ansatz, welchen viele der erstellten Assets
verfolgten, hat sich als besondere Stärke des Systems herausgestellt. Systeme
die eine Basisform, wie eine Kurve oder ein einfaches Mesh zu einem visuell
komplexen und ansprechenden Ergebnis formen, haben sich in der
Testerevaluation als intuitiv und wirkungsvoll herausgestellt.

Diese direkte, skizzenartige Arbeitsweise reduziert technische Komplexität
spürbar und fördert einen kreativen, experimentellen Workflow, was genau dem
Ziel des Projekts entspricht.

Das Toolkit zeigt außerdem, dass die Nutzung prozedurale Systeme bei der
Erstellung kleiner bis mittelgroßer Low-Poly-Szenen deutlich zeit-effizienter ist.
Feedback durch Tester und eigene Erprobung zeigen, dass der Look der
generierten Assets konsistent ist. Das System macht sichtbar, dass prozedurale
Methoden, wenn sie gut aufbereitet sind, auch für weniger erfahrene Nutzer
einfach zugänglich gemachte werden können.

Gleichzeitig ist während der Entwicklung und Evaluation deutlich geworden, dass
der Umfang des LPTK zu ambitioniert war. Der Anspruch war es, nur mit dem
System komplexe Szenen vollständig abbilden zu können. Die Entwicklung
einzelner Funktionen und Systeme hat jedoch sehr viel Zeit in Anspruch
genommen. Das ursprüngliche in 4.1.4 thematisierte System zur
Wassergruppierung ist bspw. aufgrund unzureichender Erfahrung und Funktionen
innerhalb Blenders in eines der größten Projekte dieser Arbeit ausgeartet.
Dadurch und durch andere Komplikationen wurde einige Node Setups, sowohl in
ihrem Funktionsumfang als auch in ihrer Parametrisierung und Bedienlogik, nicht

57

vollständig umgesetzt. Aus dem ambitionierten quantitativen Anspruch und der
mangelnden Zeit entstand ein Qualitätsgefälle zwischen einzelnen Systemen was
beispielsweise dazu führte, dass einige Features des ‚ProceduralTerrains‘ nicht im
‚MeshTerrain‘ implementiert waren, was auch bei der Testerevaluation für
Verwirrung sorgte.

Einige geplante Features wie Innenräume für das Tower- und Castle-Setup sowie
ein mesh-basiertes Haussystem konnten nicht zufriedenstellend umgesetzt
werden und wurden abgebrochen, obwohl begehbare Innenräume in vielen
Spielkonzepten einen deutlichen Mehrwert bieten würden.

Trotz dieser Grenzen zeigt die in dieser Arbeit entwickelte Implementation des
LPTK ein hohes Potenzial. Die Werkzeuge funktionieren, die Interaktion ist
intuitiv, und die Ergebnisse sind konsistent reproduzierbar. Die Testerevaluation
bestätigt, dass das Toolkit technische Hürden senkt und kreative Entscheidungen
deutlich erleichtert. Damit liefert das LPTK nicht nur einen funktionsfähigen
Prototypen, sondern auch wichtige Erkenntnisse darüber, wie eine prozedurale
Asset-Bibliothek gestaltet sein kann, um zugänglich, erweiterbar und für die
Spieleentwicklung einen tatsächlichen Mehrwert zu liefern.

6.2 Blender und Geometry Nodes als Basis des LPTK
Die Wahl von Blender und Geometry Nodes als technisches Fundament des LPTK
hatte Vor- und Nachteile. Nachdem in 3.2.1 die Gründe genannt wurden, die vor
dem Start des Projekts für Blender sprachen, wird in diesem Kapitel die
Entscheidung nach Durchführung des Projekts diskutiert.

Wie bereits erwähnt, stellte die bereits vorhandene Erfahrung mit Blender einen
entscheidenden Vorteil für die Wahl dar. Die Entwicklung der Systeme konnte
nach kurzer Einarbeitung in die Grundkonzepte der Geometry Nodes beginnen,
ohne dass viel Zeit in das Erlernen der grundlegenden Oberflächen einer
alternativen Umgebung wie Houdini investiert werden musste.

Die grundlegenden Konzepte zur Funktionsweise von Geometry Nodes wirken
anfangs komplex. Das Spreadsheet, Fields, Instanziierung und Selektion
unterscheiden sich in vielerlei Hinsicht stark von manuellen Workflows und
schrecken selbst erfahrene Blender-Nutzer anfangs ab. Sobald die
grundlegenden Prinzipien jedoch verstanden sind, lassen sich Systeme flexibel
erweitern, funktionelle Muster erkennen und in unterschiedlichen Kontexten
wiederverwenden.

Durch die Kombination verschiedenster Nodes sind umfangreiche Systeme, die
komplexe Probleme lösen, mit Geometry Nodes durchaus umsetzbar. Häufig wird
jedoch selbst für die Erstellung simpler Systeme eine Vielzahl an kombinierten
Nodes benötigt, was die Erstellung der Node Trees unnötig verkompliziert.

Was Blender als Basis rückblickend besonders interessant für Mixed-Authorship
orientierte Systeme macht, sind die klassischen Modellierungswerkzeuge, die
bereits sehr ausgereift sind und sich mit prozeduralen Systemen wie
beispielsweise dem MeshTerrain optimal kombinieren lassen. Polygonale
Modellierung, Sculpting oder Hair-Sculpting bieten eine starke Grundlage und
sind optimal für experimentelle Systeme wie die in 4.1.6 beschriebenen

58

‚ScatterCurves‘ nutzbar. Diese Kombination aus traditioneller Modellierung und
prozeduraler Generierung war für das LPTK ein großer Vorteil, da viele Ideen zur
Interaktion mit dem System Ideen aus beiden Bereichen miteinander verknüpft.

Dem entgegen birgt die Wahl von Blender und insbesondere der Geometry Nodes
zur Erstellung einer professionellen auch einige Risiken.
Wie bereits in 2.5.5. beschrieben, befinden sich die Geometry Nodes noch in
voller Entwicklung und wurden in den letzten Jahren mehrmals fundamental
verändert. Das LPTK wurde mit Blender 4.5 entwickelt, mit der Veröffentlichung
von Blender 5.0 wurden die Geometry Nodes erneut in vielen Bereich
überarbeitet, sodass einzelne Setups in Zukunft potenziell nicht mehr
funktionieren oder angepasst werden müssen. Diese fehlende Stabilität
erschwert es, langfristig nutzbare Systeme zu bauen und in einem
professionellen Kontext einzusetzen.

Auch die Dokumentation ist nicht durchgehend zuverlässig. Grundlagen werden
teilweise gut erklärt, aber komplexere Konzepte wie Repeat Zones oder
fortgeschrittene Selektionslogiken werden nur sehr oberflächlich behandelt und
nicht anhand passender Beispiele besprochen. In der Community gibt es zwar
einzelne Creator, die komplexere Systeme vorstellen, doch im Vergleich zur
klassischen Modellierung oder Shader-Entwicklung ist das verfügbare
Lernmaterial für Geometry Nodes deutlich geringer, was dazu führt, dass bei
spezifischen Problemen eigene Lösungen erarbeitet werden müssen. Viele
Tutorials sind zudem, ähnlich wie die Dokumentation, schnell veraltet, da sich die
Nodes ständig verändern, was die Fehlersuche oder Weiterentwicklung
zeitaufwendig macht.

Ein weiterer limitierender Faktor zur Erstellung nutzerfreundlicher Systeme ist
das Modifier-Stack eingebundene Interface der Geometry Nodes. Viele
Parameter, welche die prozedurale Logik steuern können, nicht verfügbar
gemacht werden. Beispielsweise lassen sich weder Kurven (Float/RGB) noch
Colors Ramps exponieren. Die Konfiguration des Panels ist ebenfalls
eingeschränkt. Zwar werden Parameter im Modifier je nach Nutzbarkeit visuell
kodiert, es gibt aber keine Möglichkeit exponierte Parameter dynamisch zu
generieren, was die kontextabhängige UI-Gestaltung erschwert, wodurch
zwangsläufig Kompromisse bei Bedienbarkeit und Klarheit der Systeme
entstehen.

Hinzu kommt die fehlende native Synchronisation in gängige Game Engines. Für
einen Spieleentwicklungs-Workflow wäre eine native und direkte Anbindung,
durch ein neues Dateiformat oder analog zur Implementation der Houdini Engine,
ein großer Vorteil.

Insgesamt zeigen Blender und Geometry Nodes im Speziellen jedoch ein großes
Potenzial, vor allem für kleine Teams oder Solo-Entwickler, die nach einer
kostengünstigen und flexiblen Lösung suchen und denen kontinuierliche
Weiterentwicklung wichtiger ist, als absolute Langzeitstabilität.

Insgesamt kann festegestellt werden dass, sich Blender für sehr umfangreiche,
langfristig gepflegte Bibliotheken heute nur eingeschränkt empfehlen lässt. Für
kleinere, experimentelle Systeme, wie das LPTK, ist Blender aber eine optimale

59

Basis, weil es schnelle Iterationen erlaubt, eine starke Modellierungsumgebung
mitbringt und prozedurale Experimente sehr direkt unterstützt.

6.2.1 Blender Python API zur Add-on Entwicklung
Die Entwicklung des Add-ons mithilfe der Blender Python API (bpy) nahm im
Vergleich zur Erstellung der prozeduralen Assets weniger Zeit in Anspruch, soll in
diesem Kontext dennoch kurz reflektiert werden.

Die bpy ist ein mächtiges Werkzeug und für die professionelle Integration
benutzerdefinierter Funktionen in Blender unumgänglich. Sie bietet im Kontext
des LPTK eine Flexibilität, welche mit dem integrierten Asset-Library-System
nicht erreicht worden wäre. So ermöglichten sie eine Vielzahl an Workflow-
Optimierungen, wie die in 4.2.2 beschriebenen, kontextspezifischen ‚NodeTypes‘,
wodurch die Nutzung des LPTK erleichtert wurde.

Gleichzeitig traten während der Entwicklung spezifischer Features einige
Herausforderungen auf. So ist die in Kapitel 4.2 angesprochene Operatoren-Logik
von Blender stark kontextabhängig. Dadurch kann die Ausführung der
Instruktionen abweichend vom erwarteten Verhalten erfolgen, wenn sich der
Nutzer in einem spezifischen Fenster oder UI-Element befindet. Diese
Kontextsensitivität erschwert das Debugging erheblich und kann bereits bei
geringfühgig unterschiedelicher Nutzung zu unerwarteten Fehlern führen.

Zuletzt leidet auch die Blender Python API, ähnlich wie die Geometry Nodes,
stellenweise unter einer unzureichenden Dokumentation. Durch die schnelle
Weiterentwicklung, Änderung von Konzepten und die Open-Source-Natur kommt
es stellenweise zu undokumentierten Funktionen. Für die Integration spezifischer
Features, wie der in Kapitel 4.2.5.3 beschriebenen ‚Vertex Color Baking
Automation‘, existieren wenige Ressourcen, was die Entwicklungszeit deutlich
verlängert.

6.3 Prozedurale Assets für die Spielentwicklung
Im Folgenden wird der prozedurale Ansatz im Kontext der Spieleentwicklung
diskutiert, unabhängig von der spezifischen Entwicklungsumgebung. Im Fokus
stehen dabei Systeme mit einem Mixed-Authorship-Ansatz55, welche den Kern
dieser Arbeit und des entwickelten LPTKs darstellen.

Die Entwicklung prozeduraler Systeme zur Asset-Generierung ist initial meist mit
einem deutlich höheren Aufwand verbunden als die manuelle Erstellung einzelner
Modelle. Ein einfacher Low-Poly-Baum kann beispielsweise innerhalb weniger
Minuten manuell modelliert und texturiert werden, während die Entwicklung
eines Systems, das vergleichbare Bäume automatisch generiert, wesentlich mehr
Zeit beansprucht. Prozedurale Lösungen amortisieren sich daher vor allem dann,

55 Die „Autorenschaft“ des Nutzers ist innerhalb der im LPTK implementierten Systeme
stärker gewichtet als in den in der Literatur beschriebenen Beispielen, weshalb der Begriff
nur bedingt zutrifft. Die hier vorgestellten Systeme ließen sich präziser als ‚user-
authoritative‘ bzw. ‚nutzer-autoritativ‘ beschreiben.

60

wenn ein Asset häufig eingesetzt wird oder signifikant von Eigenschaften wie
Variation, Anpassbarkeit und Wiederverwendbarkeit profitiert.

Aus diesem Grund muss in der Spieleentwicklung kritisch abgewogen werden, ob
ein Asset durch prozedurale Eigenschaften einen realen Mehrwert erhält. Ein
prozeduraler Ansatz sollte niemals als Selbstzweck dienen. Die bloße technische
Machbarkeit rechtfertigt nicht automatisch den Entwicklungsaufwand.
Insbesondere Technical Artists und Entwickler neigen dazu, aus technischer
Begeisterung komplexe Lösungen zu implementieren, ohne dass die
Problemstellung diese Komplexität erfordert. Weder das Endergebnis noch der
Workflow profitieren von einer theoretisch unendlichen Anzahl an Baumvarianten,
wenn das Projekt faktisch nur wenige, klar definierte Modelle benötigt.

Bieten prozedurale Systeme jedoch einen funktionalen Vorteil, etwa durch die
präzisere Abbildung einer kreativen Vision, erleichterte Anpassungen oder eine
spürbare Beschleunigung des Workflows, entfalten sie ein erhebliches Potenzial.

Besonders der Bereich Mixed-Authorship-Asset-Packs, wie in dieser Arbeit
erforscht, bietet hierbei vielversprechende Möglichkeiten. Hier greifen
Skaleneffekte, die den hohen Initialaufwand der Entwicklung rechtfertigen. Da
das prozedurale System nicht nur für ein einziges Projekt, sondern
projektübergreifend von einer Vielzahl von Entwicklern genutzt werden kann,
amortisiert sich die komplexe Entwicklung deutlich schneller als bei einer
proprietären In-House-Lösung.

Durch die Prozeduralisierung werden zudem wesentliche Nachteile klassischer
Asset-Packs gelöst. Der Nutzer muss seine Vision nicht mehr an die statischen
Formen der vorhandenen Assets anpassen. Stattdessen ermöglichen es die
prozeduralen Parameter, die Assets flexibel an die eigene kreative Vision
anzugleichen.

Trotz dieses Potenzials stellen Mixed-Authorship-Systeme für 3D-Geometrie in
gängigen Asset-Stores derzeit noch eine Nische dar. Während prozedurale
Materialien in der Industrie bereits weit verbreitet sind, existieren kaum
vergleichbare, zugängliche Lösungen für die Modellgenerierung. Die Entwicklung
und Etablierung solcher Asset-Packs würde somit eine signifikante Lücke im
aktuellen Marktangebot schließen und könnte einen echten Mehrwert bieten.

61

7. Fazit und Ausblick
Die intensive Auseinandersetzung mit der prozeduralen Modellierung sowie die
praktische Ausarbeitung des LPTK haben gezeigt, dass im Mixed-Authorship-
Ansatz ein großes Potenzial steckt. Die Ergebnisse machen deutlich, dass dieser
Weg, verglichen mit statischen Asset-Packs und der manuellen Modellierung,
einen echten Mehrwert bieten kann, sobald Flexibilität, Anpassbarkeit und
Entwicklungsgeschwindigkeit gefragt sind.

Zwar existieren auf dem Markt bereits vereinzelte prozedurale Systeme für
spezifische Aufgaben wie die Terrain-Generierung, umfassende und zugängliche
Bibliotheken für Indie-Entwickler fehlen hingegen weitgehend. Die Arbeit zeigt,
dass der Ansatz insgesamt noch unterschätzt wird und viele Möglichkeiten für
effizientere Workflows bietet.

Gleichzeitig haben Evaluation und Diskussion des Ansatzes aber auch
Herausforderungen aufgezeigt. Damit solche Werkzeuge ihren vollen Nutzen bei
der potenziellen Zielgruppe entfalten können, müssen sie so nah wie möglich am
Zielsystem, der Game-Engine, integriert sein. Das LPTK ist zum jetzigen
Zeitpunkt am stärksten durch die Integration in Blender eingeschränkt. Trotz des
entwickelten ‚Collection Exporters‘ und der ausgearbeiteten Nutzeroberfläche
stellt dieser technische Zwischenschritt eine große Hürde dar.

Für das LPTK ist das Projekt mit dieser Arbeit dennoch nicht beendet. Geplant
sind eine Migration auf Blender 5.0 sowie eine Aufarbeitung der einzelnen
Systeme basierend auf dem erhaltenen Nutzerfeedback. Mein Ziel ist es, das
Toolkit anschließend kostenlos zu veröffentlichen. Damit möchte ich Indie-
Entwicklern eine konkrete Hilfe an die Hand geben und weiter auf das
vielversprechende Thema der prozeduralen Modellierung aufmerksam machen.

62

Literatur
[1] Statista. "DIGITAL & TRENDS Indie gaming." Zugriff am: 30. September 2025. [Online.]

Verfügbar: https://www.statista.com/study/188180/indie-gaming/
[2] Gamalytic. "Publisher class definition." Zugriff am: 29. September 2025. [Online.] Verfügbar:

https://gamalytic.com/about
[3] Video Game Insights. "The Big Game Engine Report of 2025." Zugriff am: 30. September

2025. [Online.] Verfügbar: https://app.sensortower.com/vgi/assets/reports/The_Big_Game_
Engines_Report_of_2025.pdf

[4] E. Folmer, "Component Based Game Development – A Solution to Escalating Costs and
Expanding Deadlines?," in Component-Based Software Engineering (Lecture Notes in
Computer Science 4608), D. Hutchison et al., Hg., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, S. 66–73.

[5] C.-H. Kung und K.-C. Liang, Exploring the Usability and Future Development of AI-Generated
3D Models in CAD Workflows and the Metaverse Based on 3D Model Standards, 2025.

[6] GMU MPI Saarbrücken, Geometric Modeling Based on Polygonal Meshes.
[7] S. Münster et al., "3D Modeling," in Handbook of Digital 3D Reconstruction of Historical

Architecture (Synthesis Lectures on Engineers, Technology, & Society 28), S. Münster et al.,
Hg., Cham: Springer Nature Switzerland, 2024, S. 107–128.

[8] M. Gai und G. Wang, Artistic Low Poly rendering for images (32), 2016.
[9] D.-M. Lee. "Blender 3D as a Catalyst for Indie Game Development."
[10] Autodesk Inc. "Maya Preisübersicht." Zugriff am: 23. November 2025. [Online.] Verfügbar:

https://www.autodesk.com/de/products/maya/overview
[11] Blender Authors. "Blender API Overview." Zugriff am: 29. September 2025. [Online.]

Verfügbar: https://docs.blender.org/api/current/info_overview.html#
[12] Blender. "Add-on Tutorial." Zugriff am: 29. September 2025. [Online.] Verfügbar: https://

docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html
[13] Nathaniel Rupsis, How do I contribute? — Blender Conference 2024. [Online]. Verfügbar

unter: https://youtu.be/AAOyToizw_M?si=jvyK7aICk_JnFuoz&t=2288
[14] Blender. "Node Wrangler." Zugriff am: 16. Oktober 2025. [Online.] Verfügbar: https://

docs.blender.org/manual/en/latest/addons/node/node_wrangler.html
[15] Noor Shaker, Julian Togelius, Mark J. Nelson, Procedural Content Generation in Games.

Gewerbestrasse 11, 6330 Cham, Switzerland: Springer International Publishing Switzerland,
2017.

[16] J. Togelius et al., Procedural Content Generation: Goals, Challenges and Actionable Steps.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013.

[17] Gillian Smith, Procedural Content Generation An Overview. [Online]. Verfügbar unter: https://
www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter40_Procedural_Content_Generation_
An_Overview.pdf

[18] R. M. Smelik, T. Tutenel, R. Bidarra und B. Benes, A Survey on Procedural Modelling for Virtual
Worlds (33), 2014.

[19] A. L. Przemyslaw Prusinkiewicz, The Algorithmic Beauty of Plants.
[20] P. Müller, P. Wonka, S. Haegler, A. Ulmer und L. van Gool, "Procedural modeling of buildings,"

ACM Trans. Graph., Jg. 25, Nr. 3, S. 614–623, 2006.
[21] Lars Krecklau and Leif Kobbelt, Interactive Modeling by Procedural High-Level Primitives.
[22] Y. Rabii und M. Cook, "Why Oatmeal is Cheap: Kolmogorov Complexity and Procedural

Generation," in Proceedings of the 18th International Conference on the Foundations of Digital
Games, Lisbon Portugal, P. Lopes, F. Luz, A. Liapis und H. Engström, Hg., 04122023, S. 1–7,
doi: 10.1145/3582437.3582484.

[23] Blender. "Attributes." Zugriff am: 15. November 2025. [Online.] Verfügbar: https://
docs.blender.org/manual/en/latest/modeling/geometry_nodes/attributes_reference.html

[24] Blender. "Blender Asset-Library-System." Zugriff am: 13. Oktober 2025. [Online.] Verfügbar:
https://docs.blender.org/manual/en/latest/files/asset_libraries/introduction.html#what-is-an-
asset-library

[25] ALLTHEWORKS11. "Easy Geometry Nodes - Low-poly Stylized Trees BLENDER 3.0." Zugriff
am: 14. Oktober 2025. [Online.] Verfügbar: https://www.youtube.com/watch?v=
G4VEHi3dI6w&

63

Abbildungsverzeichnis
Abbildung 1: Marktanteil von auf Steam veröffentlichten Indie-Spielen von 2018 bis 2024 (Statista). 2
Abbildung 2: Game Engine Mix nach verkauften Einheiten [3]. ... 3
Abbildung 3: Entwicklung der veröffentlichten Indie-Spiele mit über einer Million Verkäufen von 2006 bis
2024, getrennt nach 2D- und 3D-Titeln. Die Darstellung zeigt die zunehmende Bedeutung von 3D-
Produktionen im Indie-Sektor (eigene Darstellung). .. 4
Abbildung 4: Polygonaler Würfel mit visualisiertem Vertex, Edge und Face (eigene Darstellung). 5
Abbildung 5: Mit LPTK erstelltes Terrain (eigene Darstellung). .. 8
Abbildung 6: Sunburst-Chart Darstellung der " Top 100 paid Assets", 30.09.2025 (eigene Darstellung)
Quelle der Daten in A4. ... 9
Abbildung 7: Google Trends Such-Interesse Populärer 3D-Programme, Blender Hervorgehoben.
Datenquelle: Google Trends, Suchbegriffe im Zeitraum 01.01.2020 – 24.10.2025 (eigene Darstellung). 10
Abbildung 8, Prozeduraler Shader für Vornoi-basierte Glasmalerei (eigene Darstellung).......................... 12
Abbildung 9: Beispielhafte Darstellung des ‚ProceduralTerrain‘ Systems des LPTK mit visualisierten
Boolean-Meshes (eigene Darstellung). .. 15
Abbildung 10: Beispielhafter Node Tree (eigene Darstellung). .. 17
Abbildung 11: Visualisierung des Effekts der in Abbildung 10 gezeigten Set Position Node auf einem
Würfel. Grauer Würfel vor, oranger nach der Set Position Operation (eigene Darstellung). 17
Abbildung 12: Spreadsheet-Übersicht der Vertex Domain eines Würfels (eigene Darstellung). 18
Abbildung 13: Übersicht der für das LPTK relevanten Datentypen (eigene Darstellung). 18
Abbildung 14: Field-basierte Attributzuweisung (eigene Darstellung). .. 19
Abbildung 15: Darstellung der Vertex Domain des Spreadsheets nach der 'HighPoints' Zuweisung (eigene
Darstellung). .. 19
Abbildung 16: Hervorhebung der Vertices mit zugewiesenem 'HighPoints'-Wert durch Rote Kugeln (eigene
Darstellung). .. 19
Abbildung 17: Geometry Nodes Oberfläche in Blender 4.5 am Beispiel des „Palisade1“-Node Trees
(eigene Darstellung). .. 20
Abbildung 18: What kind of work do you do with Blender? (Datenquelle: 2024 Blender User Survey) (eigene
Darstellung). .. 22
Abbildung 19: Asset Browser UI der LPTK Asset-Library (eigene Darstellung). ... 23
Abbildung 20:Rendering eines ‚FunkyTrees‘ auf einem ‚MeshTerrain‘ (eigene Darstellung). 25
Abbildung 21: Node-Tree des ‚FunkyTree‘-Systems mit visualisierten Verarbeitungsschritten (eigene
Darstellung). .. 26
Abbildung 22: Ausschnitt vom ‚FunkyTree‘-Setup mit Fokus auf der Group Input Node und der ‚Trunk‘-
Gruppe (eigene Darstellung). .. 27
Abbildung 23: Group Sockets der "FunkyTree" Group Input-Node, einseh- und konfigurierbar im Node-
Backend (eigene Darstellung). .. 27
Abbildung 24: Geometry Nodes Modifier des ‚FunkyTree‘-Systems (eigene Darstellung). 28
Abbildung 25: 'Curve to Plane'-Gruppe .. 29
Abbildung 26: Darstellung des ‚StonePath‘-Systems auf einem ‚MeshTerrain‘ (eigene Darstellung). 29
Abbildung 27: Bimodale Schaltungslogik ... 30
Abbildung 28: Darstellung der Pfadgenerierung in drei Schritten .. 31
Abbildung 29: Vereinfachte vertikale Darstellung des ‚ProceduralTerrain‘-Setups (eigene Darstellung). ... 32
Abbildung 30: Beispiel Rendering eines ‚ProceduralTerrain‘ (eigene Darstellung). 32
Abbildung 31: ‚ProceduralTerrain‘ Basis-Mesh mit visualisierten Vertices und deren Z-Positionen (eigene
Darstellung). .. 33
Abbildung 32: 'BaseMesh & Booleans'- und 'Merge & Triangulation'-Gruppe ... 33
Abbildung 33: 'Material Manager'- und 'Polish'-Gruppe ... 34
Abbildung 34: 'Water Generation'-Gruppe .. 35
Abbildung 35: ProceduralTerrain mit visualisierten Punktwolken (rot) und hervorgehobenen Wasser-
Volumen (blau) (eigene Darstellung). ... 35
Abbildung 36: ‚ProceduralTerrain‘ in drei Schritten ... 37
Abbildung 37: Mesh-Terrain auf Basis zweier einfacher Box-Geometrien (eigene Darstellung). 38

64

Abbildung 38: ‚MeshTerrain‘ auf durch sculpting definierter Basisgeometrie (eigene Darstellung). 38
Abbildung 39: Visualisierung von Weightpainting auf niedrig aufgelöster Plane. Die Roten Regionen zeigen
Vertices mit Weight 1.0, die blauen mit weight 0.0. Aufgrund der niedrigen Auflösung wirkt sich der Weight-
Paint auf die umliegenden Faces aus (eigene Darstellung). ... 39
Abbildung 40: Darstellung eines ‚ScatterCuves‘-Systems auf welches drei "Haare" (Kurven) platziert
wurden, welche mithilfe der Hair Sculpting Brushes angepasst werden können (eigene Darstellung)....... 40
Abbildung 41: Nutzeroberfläche des LPTK (eigene Darstellung). .. 45
Abbildung 42: Beispielhafte Darstellung einer Kollektionsstruktur im Outliner (eigene Darstellung). 48
Abbildung 43: ‚Collection Exporter‘-Panel innerhalb des LPTK Add-ons (eigene Darstellung). 48
Abbildung 44: Gegenüberstellung zweier gleicher Tannen, links ohne Farbverlauf, rechts mit Farbverlauf
(eigene Darstellung). .. 50
Abbildung 45: Nutzer-Evaluation, Selbsteinschätzung relevanter Vorerfahrung (eigene Darstellung). 53
Abbildung 46: Quantitativer Vergleich der Nutzererfahrung des LPTK (eigene Darstellung). 54
Abbildung 47: Zeigt das Ergebniss der Modellierung der Referenzskizze eines Test-Nutzers mit dem LPTK
(eigene Darstellung). .. 55
Abbildung 48:Zeigt das Ergebnis der Modellierung der Referenzskizze eines Test-Nutzers ohne das LPTK
(eigene Darstellung). .. 55

Bildquellen
Abbildung 1: Marktanteil von auf Steam veröffentlichten Indie-Spielen von 2018 bis 2024 (Statista).

Quelle: https://www.statista.com/statistics/1535485/steamsteam-annual-indie-game-share/

Abgerufen am: 30.09.2025

Abbildung 2: Game Engine Mix nach verkauften Einheiten (Video Game Insights).

Quelle: https://app.sensortower.com/vgi/assets/reports/VGI_Global_Indie_Games_Market_Report_2024.pdf

Abgerufen am: 30.09.2025

Alle weiteren Abbildungen sind eigene Darstellungen.

65

Anhang

A1 Übersicht über aller Thumbnails der verfügbaren Node
Setups des LPTK
1/2

66

A1 Übersicht über aller Thumbnails der verfügbaren
prozeduralen Assets des LPTK
2/2

67

A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation
Renderings aller Ergebnisse der Nutzerevaluation.

Links nur Blender, Rechts mit LPTK

1/2

68

A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation
Renderings aller Ergebnisse der Nutzerevaluation.

Links nur Blender, Rechts mit LPTK

2/2

69

A3 Kategorisierung von Indie-Spielen mit mehr als
einer Millionen Verkäufe
Die Ausgangsquelle wurde zur Erstellung von Abbildung 3 händisch in
Spiele mit 2D und 3D-Darstellungen unterteilt. Aufgrund des Umfangs
der Analyse wurde diese nicht ausgedruckt, kann aber online
abgerufen werden

Auswertung: https://joshuabattenfeld.com/LPTK/THESIS/A3

Als Ausgangsquelle diente: https://en.wikipedia.org/wiki/Indie_game

Abgerufen am: 18.11.2025

A4 Kategorisierung der „Top 100 Paid Assets” des Unity
Asset Stores
Zur Erstellung von Abbildung 6 wurde die analysiert und die einzelnen
Assets händisch kategorisiert. Aufgrund des Umfangs der Analyse
wurde diese nicht ausgedruckt, kann aber online abgerufen werden

Auswertung: https://joshuabattenfeld.com/LPTK/THESIS/A4

Als Ausgangsquelle diente: https://assetstore.unity.com/top-assets/top-paid

Abgerufen am: 30.09.2025

A5 Ergebnisse der Nutzerevaluation, Google-Forms
Ergebnisse als csv: https://joshuabattenfeld.com/LPTK/THESIS/A5

A6 Ergebnisse der Nutzerevaluation, Kurzinterviews
Stichpunktartige Zusammenfassung:
https://joshuabattenfeld.com/LPTK/THESIS/A6

A7 Referenzskizze der Nutzerevaluation
Skizze: https://joshuabattenfeld.com/LPTK/THESIS/A7

A3

A4

A5

A6

A7

	1. Einleitung
	2. Theoretischer Hintergrund
	2.1 Indie-Spielentwicklung
	2.2 3D-Modelle im Kontext der Spieleentwicklung
	2.2.1 Polygonale Darstellung von 3D-Modellen
	2.2.2 Beschaffung von 3D-Modellen

	2.3 Low-Poly Artstyle
	2.3.1 Gründe für Low-Poly im LPTK

	2.4 Blender im Indie-Spielentwicklungs Kontext
	2.4.1 Blender Add-ons

	2.5 Procedural Content Generation
	2.5.1 Prozedurale Modellierung
	2.5.2 Vor- und Nachteile prozeduraler Systeme
	2.5.3 Automatic Generation versus Mixed Authorship
	2.5.4 Moderne Node-Based-Tools
	2.5.4.1 Houdini als Industriestandard
	2.5.4.2 Spezialisierte Lösungen

	2.5.5 Blender Geometry Nodes
	2.5.5.1 Das Attribut-Konzept
	2.5.5.2 Das Feld-Konzept (Fields)
	2.5.5.3 Entwicklung der Geometry Nodes und Arbeitsumgebung

	3. Methodik
	3.1 Anforderungen an die entwickelte Asset-Bibliothek
	3.2 Auswahl der Werkzeuge
	3.2.1 Blender und Geometry Nodes als prozedurale Basis
	3.2.2 Add-on statt Blenders integrierter Asset-Library

	4. Umsetzung
	4.1 Entwicklung der Geometry Node Trees
	4.1.1 Erste Experimente
	4.1.2 Parametrisierung anhand des ‚FunkyTree‘-Systems
	4.1.3 Kurvenbasierte Pfadgenerieung
	4.1.3.1 ‚Curve to Plane‘
	4.1.3.2 Instanziierung und Projektion mit ‚Stones on Surface‘
	4.1.3.3 ‚Material Manager‘
	4.1.3.4 ‚Default Stone Extrusion and Deformation‘

	4.1.4 ‚ProceduralTerrain‘
	4.1.4.1 Basis-Mesh & Booleans
	4.1.4.2 ‚Merge & Triangulation‘
	4.1.4.3 ‚Material Manager‘
	4.1.4.4 ‚Water Generation‘
	4.1.4.5 ‚Polish ‘

	4.1.5 Erweiterung zum ‚MeshTerrain‘
	4.1.6 Scattering-Systeme
	4.1.6.1 Herausforderungen eines Weight-Paint-basierten Ansatzes
	4.1.6.2 UV-basiertes Curve-Scattering (LPTK-Ansatz)

	4.2 Entwicklung des Add-ons in Python
	4.2.1 Einlesen der Node Trees
	4.2.2 ‚Node-Types‘
	4.2.3 ‚Node-Spawning‘
	4.2.4 Nutzeroberfläche
	4.2.4.1 Implementierung der Oberfläche anhand des Asset Panels

	4.2.5 Integration des Game-Enginge-Syncs
	4.2.5.1 Collection Exporter
	4.2.5.2 Implementierung der Export-Logik
	4.2.5.3 ‚Vertex Color Baking Automation‘

	4.2.6 Entwicklung des ‚Thumbnail-Renderers‘

	5. Empirische Evaluation
	5.1 Aufbau und Methodik
	5.2 Quantitative Ergebnisse
	5.3 Qualitative Ergebnisse

	6. Diskussion
	6.1 LPTK als entwickelter Ansatz
	6.2 Blender und Geometry Nodes als Basis des LPTK
	6.2.1 Blender Python API zur Add-on Entwicklung

	7. Fazit und Ausblick
	Literatur
	Abbildungsverzeichnis
	Bildquellen
	Anhang
	A1 Übersicht über aller Thumbnails der verfügbaren Node Setups des LPTK
	A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation
	A3 Kategorisierung von Indie-Spielen mit mehr als einer Millionen Verkäufe
	A4 Kategorisierung der „Top 100 Paid Assets” des Unity Asset Stores
	A5 Ergebnisse der Nutzerevaluation, Google-Forms
	A6 Ergebnisse der Nutzerevaluation, Kurzinterviews
	A7 Referenzskizze der Nutzerevaluation

