FH Aachen
University of Applied Sciences

Fachbereich 05: Elektrotechnik und Informationstechnik

Bachelorarbeit zum Thema:

Entwicklung einer prozeduralen
Low-Poly-Asset-Bibliothek mit
Blender Geometry Nodes

Zur Erlangung des Grades: Bachelor of Science (B. Sc.)

Vorgelegt von:

Joshua Battenfeld
LeydelstraBe 3, 52064, Aachen
info@joshuabattenfeld.com
Matrikelnummer: 3580943

Erstprifer: Prof. Dr.-Ing. Frank Hartung
Zweitprifer: René Hef3, M. A.

Abgabedatum: 26.11.2025
Studiengang: Media and Communications for Digital Business (MCD) B. Sc.

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Kurzfassung

Die Erstellung von 3D-Modellen stellt in der Spieleentwicklung einen erheblichen
Produktionsaufwand dar. Prozedurale Generierung verspricht hier Entlastung,
indem sie die Modellierung Uber parametrisierbare, teil-automatisierte Systeme
unterstiatzt.

Moderne 3D-Software bietet zunehmend Schnittstellen zur prozeduralen
Inhaltserstellung. Dazu zahlt auch das populare Open-Source-Programm Blender,
das seit 2021 mit den Geometry Nodes eine nodebasierte Oberflache zur nicht-
destruktiven, parametrischen Generierung von 3D-Inhalten bereitstellit.

In dieser Arbeit werden die Herausforderungen, Potenziale und Limitationen der
Entwicklung und des Einsatzes einer prozeduralen Low-Poly-Asset-Bibliothek mit
Blender Geometry Nodes untersucht.

Hierzu wird ein als Blender Add-on implementiertes Toolkit entwickelt, das aus
modularen Geometry Node Setups besteht und die effiziente Erstellung stilisierter
Low-Poly-Welten in einem mittelalterlichen Setting ermdglicht. AnschlieBend wird
das System im Rahmen einer Nutzerevaluation getestet und sowohl der
prozedurale Ansatz als auch die konkrete Implementierung kritisch diskutiert.

Die Arbeit schlieBt mit der Erkenntnis, dass prozedurale Asset-Bibliotheken in der
richtigen Umsetzung und Game-Engine naher Implementation einen echten
Mehrwert liefern kdnnen. Insgesamt verdeutlicht die Arbeit das bislang
unterschatzte Potenzial zuganglicher prozeduraler Asset-Bibliotheken,
insbesondere flir Indie-Entwickler.

Abstract

The creation of 3D models represents a considerable production effort in game
development. Procedural generation promises to ease this burden by supporting
modeling via parameterizable, semi-automated systems.

Modern 3D software increasingly offers interfaces for procedural content creation.
This includes the popular open-source program Blender, which since 2021 has
provided a node-based interface for non-destructive, parametric generation of 3D
content with its Geometry Nodes.

This thesis examines the challenges, potential, and limitations of developing and
using a procedural low-poly asset library with Blender Geometry Nodes.

To this end, a toolkit implemented as a Blender add-on is developed, consisting
of modular Geometry Node setups that enable the efficient creation of stylized
low-poly worlds in a medieval setting. The system is then tested in a user
evaluation, and both the procedural approach and the concrete implementation
are critically discussed.

The thesis concludes with the finding that procedural asset libraries can deliver

added value when implemented correctly and closely integrated with the game

engine. Overall, the thesis highlights the previously underestimated potential of
accessible procedural asset libraries, especially for indie developers.

Fachhochschule Aachen

Fachbereich 05 - Elektrotechnik und Informationstechnik

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Studiengang: Media and Communications for Digital Business (MCD) B.Sc.

Eidesstattliche Erklarung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstandig verfasst und
keine anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Stellen, die wortlich oder sinngemaB aus verdffentlichten oder noch nicht
veroffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt
worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ahnlicher Form noch bei keiner anderen
Prifungsbehdrde eingereicht worden.

Ort, Datum Joshua Battenfeld

Inhaltsverzeichnis

1. Einleitung ..cccciiiiiiiisi s s s s s s s s s s s s s 1
2. Theoretischer Hintergrundcccciiiiiiiiiiiis i s s s s e s s s s 2
2.1 Indie-SpielentWiCKIUNGcooieiii e 2
2.2 3D-Modelle im Kontext der Spieleentwicklungccoviiiiiiiiiiii i, 4
2.2.1 Polygonale Darstellung von 3D-Modellen...........coviiiiiiiiiiiiii s 5
2.2.2 Beschaffung von 3D-Modellenccooiviiiiiii s 6
2.3 LOW-POlY ArtStyle. i 8
2.3.1 Grunde flr Low-Poly im LPTK ... e e 9
2.4 Blender im Indie-Spielentwicklungs Kontext...........coiiiiiiiiiiiiinnnns 10
2.4.1 Blender Add-0NScuiiriiiiiiie i 11

2.5 Procedural Content Generationcooiviiiiiiiiiiiiii e 12
2.5.1 Prozedurale Modellierung ...oc.vviiii i i 13
2.5.2 Vor- und Nachteile prozeduraler Systeme........ccccoiiviiiiiiiiiiieinen, 14
2.5.3 Automatic Generation versus Mixed Authorshipcooeeviiiii e, 15
2.5.4 Moderne Node-Based-TOOISouviiiiiiiiiiiii e 16
2.5.4.1 Houdini als Industriestandardc.coviiiiiiiiiiii e 16
2.5.4.2 Spezialisierte LOSUNGEN ...ciiiiiiiiiii i i e srinee e enneens 16
2.5.5 Blender Geometry NOdeS....oiiiiiiiiii it i e eaaes 17
2.5.5.1 Das Attribut-Konzept.....cooiiiii e 18
2.5.5.2 Das Feld-Konzept (Fields).....ccovviiiiiiiiiii i e 18
2.5.5.3 Entwicklung der Geometry Nodes und Arbeitsumgebung 20

C I 1 = 1 3 e e] 21
3.1 Anforderungen an die entwickelte Asset-Bibliothek...............coooieiiii. 21
3.2 Auswahl der Werkzeuge.o e e e 22
3.2.1 Blender und Geometry Nodes als prozedurale Basis....................... 22
3.2.2 Add-on statt Blenders integrierter Asset-Libraryccooveviininnnen. 22

4. UMSELZUNG ucriumiiemiin i i s ssa s s s st saassansssnsaansaansanssannsnnsnnnsnnnsnnns 24
4.1 Entwicklung der Geometry NOde Treesoiiviiiiiiiiiii i 24
4.1.1 Erste EXperimente .. .o e 25
4.1.2 Parametrisierung anhand des ,FunkyTree'-Systems...........ccvvviiveennns 27
4.1.3 Kurvenbasierte PfadgenerieuUngccvviiiiiiiiiiii it i eiiee e naas 29
4.1.3.1 ,Curve t0 Plane’cviiiiii i 29
4.1.3.2 Instanziierung und Projektion mit ,Stones on Surface'............... 30
4.1.3.3 ,Material Manager .. .ociiiiiii i e 31
4.1.3.4 ,Default Stone Extrusion and Deformation'..............ccovviieinnnnn. 31

s I S o oo Yol =T B] =Y I =L =11 32

4.1.4.1 Basis-Mesh & BOOIEANSciiviiiiiiiiiiii i e 33
4.1.4.2 ,Merge & Triangulation'o 33
4.1.4.3 ,Material Manager . .ociiiiii i i e 34
4.1.4.4 Water Generation' ..o e 35
4.1.4.5 POlISN . 37

4.1.5 Erweiterung zum ,MeshTerrain’coiiiiiiiiii i i e 38
4.1.6 ScCattering-SyStemM e ...t e 39
4.1.6.1 Herausforderungen eines Weight-Paint-basierten Ansatzes 39
4.1.6.2 UV-basiertes Curve-Scattering (LPTK-Ansatz)ccovvvivvviinnnnn. 39

4.2 Entwicklung des Add-ons in Python ... 41
4.2.1 Einlesen der NOde TreeS .. .uiiiiiiii it e e aaneeas 42

L A \[o Yo [Y 1< 43

2 307 200C T \\ Lo Ta [T o 7= 11V o 1 T 44
4.2.4 NutzeroberflaChe......coeiii 45
4.2.4.1 Implementierung der Oberflache anhand des Asset Panels......... 46
4.2.5 Integration des Game-ENginge-SYNCSccuiiiiiiiiiiiiiiniiniiiieeiineanns 47
4.2.5.1 Collection EXPOrter...cuiiiiiii i i e anees 48
4.2.5.2 Implementierung der EXport-LogiKccooeiiiiiiiiiiiii i 49
4.2.5.3 Vertex Color Baking Automation'.......c..cooiiiiiiiiiiiiic e 50
4.2.6 Entwicklung des ,Thumbnail-Renderers'.........ccoiviiiiii i enans 51

5. Empirische Evaluationccoiciiirismnesnsc s snsssse s s ssanssasssnssnnsnns 52
5.1 Aufbau und MethodiKoiiiiiiiiii e 52
5.2 Quantitative Ergebnisseciiiiiiiiiiiii i i s 53
5.3 Qualitative Ergebnissec.oiiiiiiiiiiii s 55
6. DiSKUSSION cuuciuiieierimrariessiar s s s s s s s ssa s ssa s saasasnnsasansasnnsnsnnsasnnnnns 56
6.1 LPTK als entwickelter Ansatzcoooviiiiiiii e 56
6.2 Blender und Geometry Nodes als Basis des LPTKcciiiiiiiiiiinnen. 57
6.2.1 Blender Python API zur Add-on Entwicklungccoviiiiiiiiiiiiinnnnns. 59
6.3 Prozedurale Assets fir die Spielentwicklung ..., 59
7. Fazit und AUSDIliCKccvmiiiiiriri i i sr s s s s s s s s s s s s n e 61
I = - T e 62
Abbildungsverzeichnis.......cciciiiiiriri i i i s s s s s e e s s s s nnas 63
21 e L LU= | =T o e 64
Y 3] 3 - T 0 T 65

A1 Ubersicht Uber aller Thumbnails der verfiigbaren Node Setups des LPTK.. 65

iv

A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation.................. 67

A3 Kategorisierung von Indie-Spielen mit mehr als einer Millionen Verkaufe . 69

A4 Kategorisierung der ,Top 100 Paid Assets” des Unity Asset Stores........... 69
A5 Ergebnisse der Nutzerevaluation, Google-Formsccoeviiiiiiiiieniinnnn. 69
A6 Ergebnisse der Nutzerevaluation, Kurzinterviewscccoovieviviineninnnnnn. 69
A7 Referenzskizze der Nutzerevaluation...........coooiiiiiiiiic i 69

1. Einleitung

Diese Arbeit fokussiert sich auf die Erforschung der Blender Geometry Nodes als
System zur Erstellung einer prozeduralen Asset-Bibliothek flr die
Spieleentwicklung.

Im Rahmen dieser Arbeit wurde eine prozedurale Asset-Bibliothek fiir Blender
entwickelt, die als Add-on realisiert ist und auf einer Reihe von Geometry Node
Setups basiert. Das resultierende System, das Low-Poly-Tool-Kit (LPTK),
ermdglicht die effiziente Erstellung stilisierter Low-Poly-Umgebungen in einem
mittelalterlichen Setting.

Zentrales Ziel des Projekts war es, eine benutzerfreundliche und erweiterbare
Oberflache zu schaffen, die es Nutzern erlaubt, bereits mit grundlegenden 3D-
Kenntnissen komplexe Szenen zu erstellen, zu modifizieren und in gangige
Game-Engines zu exportieren.

Das LPTK wandelt einfache geometrische Formen oder Kurven in konsistente,
optisch ansprechende 3D-Modelle um. Damit adressiert es eine zentrale
Herausforderung der Spieleentwicklung: die Balance zwischen kilinstlerischer
Qualitat, Produktionsgeschwindigkeit und technischer Flexibilitat.

Insbesondere in der Prototypen-Entwicklung werden haufig abstrakte
Platzhaltermodelle verwendet, die zwar schnelle Iterationen ermdglichen, jedoch
die visuelle Aussagekraft einschranken. Das LPTK setzt an dieser Stelle an, indem
es die Effizienz von Greyboxing mit den gestalterischen Mdglichkeiten
prozeduraler Systeme verbindet. Somit kénnen bereits in frihen
Entwicklungsphasen visuell ansprechende Szenen erstellt werden, ohne den
Ublichen Mehraufwand klassischer Modellierung in Kauf nehmen zu mussen.

Daruber hinaus zielt das Toolkit darauf ab, die Einstiegshlrde flr Solo-Entwickler
und kleine Teams zu reduzieren. Prozedurale Systeme Ubernehmen einen Teil der
technischen Komplexitat, sodass sich Entwickler oder Artists starker auf die

inhaltliche Gestaltung konzentrieren kénnen, anstatt der technischen Umsetzung.

Ausgehend von der Forschungsfrage

~Welche Herausforderungen, Potenziale und Limitationen ergeben sich bei der
Entwicklung einer prozeduralen Asset-Bibliothek auf Basis von Geometry Nodes
und einer Add-on-basierten Interaktionsoberfléche?"

umfasst diese Arbeit drei zentrale Untersuchungsbereiche:

1. Das Potenzial prozeduraler Assets flr eine effiziente und konsistente
Spielweltgestaltung.

2. Die technische Umsetzung prozeduraler Assets mithilfe von Blender
Geometry Nodes.

3. Die Integration der entwickelten Systeme in ein benutzerfreundliches
Blender-Add-on.

2. Theoretischer Hintergrund

Bevor die konkrete Umsetzung der prozeduralen Asset-Bibliothek besprochen
werden kann, mussen einige Grundlagen geklart werden. In Kapitel 2 werden
diese besprochen. Wobei zunachst das geplante Einsatzgebiet des LPTK, also
(Indie)-Spieleentwicklung dann 3D-Modelle in diesem Kontext, der Low-Poly-
Artstyle, Blender als Software und anschlieBend Prozedurale Ansatze, inklusive
der Grundlagen von Blenders Geometry Nodes, besprochen werden.

2.1 Indie-Spielentwicklung

Indie-Spiele haben in den vergangenen Jahren erheblich an Bedeutung
gewonnen und stellen den GroBteil der jahrlichen Spieleverdffentlichungen und
im Jahr 2024 etwa die Halfte des jahrlichen Umsatzes durch Spielverkaufe tUber
die Plattform Steam dar!. Unter ,Indie" versteht man in der Regel Produktionen
kleinerer Studios oder Einzelentwickler, die ohne die finanzielle und
organisatorische Unterstltzung groBer Publisher realisiert werden. Typisch filr
dieses Segment sind niedrigere Budgets, kleinere Teams und ein hohes MaB an
kreativer Freiheit.

Allerdings ist der Begriff ,Indie" nicht eindeutig definiert. Manche Definitionen
beziehen sich auf die Finanzierungsstruktur (keine Unterstltzung durch
Publisher), andere auf die TeamgréBe oder die Unabhdngigkeit in kreativen
Entscheidungen. Entsprechend unterscheiden sich auch die zugrunde liegenden
Statistiken zu Indie-Produktionen je nach Quelle und Erhebungsmethode.
Wahrend einige Studien ausschlieBlich die Finanzierungskriterien heranziehen,
erfassen andere alle Produktionen auBerhalb klassischer AAA-Studios. Der Begriff
der AAA-, AA- und Indie-Studios ist hierbei aber immer flieBend zu betrachten
und nicht eindeutig greifbar, Weshalb Statistiken in diesem Bereich sich auch
nicht immer auf die gleichen Spiele/Studios beziehen?. Unabhangig von der
genauen Definition gilt: Indie-Spiele stellen ein zentrales Segment der Branche

Steam market share of indie games 2018-2024 YTD

B Games released BUnits sold ™ Full game revenue
97O BB

100%

70%

50% -

Share

40% -

10%

0%
2018 2019 2020 2021 2022 2023 2024 YTD

Abbildung 1: Marktanteil von auf Steam verdéffentlichten Indie-Spielen von 2018 bis 2024 (Statista).

1[1].
2 [2].

dar. 2024 waren zum Beispiel 98,9% aller Verdffentlichungen auf Steam Indie-
Titel (Abbildung 1).

Aufgrund der meist kleinen TeamgréBen und fehlender Spezialisten entscheiden
sich Indie-Entwickler deutlich haufiger fir bestehende Softwarelésungen zur
Spieleentwicklung, anstatt eigene technische Grundlagen wie Engines oder
Frameworks zu entwickeln. Ein Blick auf entsprechende Branchenstatistiken
zeigt, dass sich insbesondere kleinere Studios mit vergleichsweise geringen
Verkaufszahlen (Abbildung 2) tberproportional haufig fir Unity als Game-Engine
entscheiden.

Unity gilt damit im Indie-Bereich als besonders relevante Entwicklungsumgebung
und pragt maBgeblich die Produktionsweise kleiner Teams.

Game Engine Mix by Size of Games

All Units Sold in 2024 by Game Engine by Game Size

Tiny Games (Under 1k Units) 23% 14%

Small Games (1k-100k Units) 27% 6% 19%

Medium Games (100k-1M Units) 32% 29%

Large Games (1M+ Units) 31%

Game
Insights

Video I unity B unreal Engine B Godot & GameMaker Other

Abbildung 2: Game Engine Mix nach verkauften Einheiten [3].

2.2 3D-Modelle im Kontext der Spieleentwicklung

Im Kontext der Spieleentwicklung stellt die Erstellung visueller Inhalte in den
meisten Fallen einen der gréBten Kostenfaktoren innerhalb der
Produktionspipeline dar3. Seit Anfang der 2000er-Jahre dominieren 3D-Spiele
den Markt, insbesondere bei den groBen Produktionen im AA- und AAA-Segment.

Durch frei verfligbare Engines wie Unity, kostenlose Modellierungssoftware wie
Blender und einen stetig wachsenden Asset-Markt kdnnen inzwischen jedoch
auch Indie-Studios zunehmend 3D-Spiele realisieren. Abbildung 3 zeigt diesen
Trend auf Basis der Wikipedia-Liste ,Indie games surpassing a million sales", die
flr diese Arbeit in 2D- und 3D-Titel unterteilt wurde (Anhang A3).

Indie-Spiel Veroffentlichungen mit mehr als einer Millionen Verkaufen
von 2006 - 2024 aufgeteilt in 2D und 3D

~
T

3D
2D

N w N w1 (o)}
T T T T T

Anzahl der Veroéffentlichungen

Y
T

o
T

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Jahr

Abbildung 3: Entwicklung der veréffentlichten Indie-Spiele mit (ber einer Million Verkdufen von 2006 bis 2024, getrennt nach
2D- und 3D-Titeln. Die Darstellung zeigt die zunehmende Bedeutung von 3D-Produktionen im Indie-Sektor (eigene Darstellung).

Diese Entwicklung unterstreicht den wirtschaftlichen Stellenwert von 3D-Inhalten
auch auBerhalb des AAA-Bereichs. Modellierung, UV-Mapping, Texturierung,
sowie die technische Aufbereitung flir Echtzeit-Engines erfordern spezialisiertes
Know-how und sind zeitintensiv.

Die Kosten von 3D-Modellen im, variieren je nach Genre und Art-Style stark von
Spiel zu Spiel, stellen jedoch im Normalfall neben den Code und Game-Design
einen der groBten Kostenpunkte der 3D-Spieleentwicklung dar?.

3[4, S. 1].
4[5, S. 783].

2.2.1 Polygonale Darstellung von 3D-Modellen

Es gibt verschiedene Methoden zur Reprasentation von dreidimensionalen
Objekten. Im Kontext der Spieleentwicklung und Echtzeit-Computergrafik haben
sich polygonale Modelle als Standard etabliert®.

Polygonale Modelle bestehen aus sogenannten Meshes, also Polygonnetzen,
welche die Oberflache eines Objekts approximieren.

Ein solches Mesh setzt sich aus folgenden
Grundelementen zusammen, welche in
Abbildung 3 visualisiert sind:

e Eckpunkten (Vertices), rot dargestellt
a. Punkte im dreidimensionalen
Raum
e Kanten (Edges), grun dargestellt
a. Verbindungen zwischen zwei
Vertices
e Flachen (Faces), blau dargestellt
a. geschlossene Flachen, die durch
drei oder mehr Vertices gebildet
werden

In modernen Produktionspipelines werden
polygonale Modelle um weitere Komponenten
wie Texturen, UV-Maps, Materialdefinitionen
sowie Rigging- und Animationsdaten erganzt.

Abbildung 4: Polygonaler Wiirfel mit
visualisiertem Vertex, Edge und Face
(eigene Darstellung).

Diese kombinieren sich zu vollstandigen 3D-Assets,
die in Game-Engines wie Unity oder Unreal Engine
importiert und in Echtzeit dargestellt werden kénnen. Im Rahmen der Arbeit
beziehe ich mich im Kontext von 3D-Modellen oder 3D-Assets grundsatzlich auf
polygonale Modelle.

Im folgenden Kapitel wird die Beschaffung solcher Modelle innerhalb der
Spieleproduktion erlautert.

516, S. 1].

2.2.2 Beschaffung von 3D-Modellen

Grundsatzlich gibt es zur Erstellung der bendtigten 3D-Assets verschiedene
Methoden, mit verschiedenen Vor- und Nachteilen.

Im Folgenden werden die wichtigsten Ansatze kurz beschrieben:
e Handische Modellierung

Die klassische, manuelle Erstellung von Modellen in 3D-Software wie Blender,
Maya oder 3ds Max. Sie bietet maximale Kontrolle Gber Form, Stil und technische
Umsetzung, ist jedoch zeitaufwendig und entsprechend kostenintensiv®.
Innerhalb dieser Kategorie existieren zahlreiche Unterformen, welche fir
spezielle Modellierung oder basierend auf Praferenz des Artists gewahlt werden.
Darunter beispielsweise:

o Polygonale Modellierung

Modelle werden durch Manipulation einzelner Polygone aufgebaut, meist durch
manuelle Extrusion, Skalierung und Verschiebung von Faces, Edges und Vertices.

o Digitales Sculpting

Eine freiere, skulpturahnliche Methode, bei der Formen aus einer Basisgeometrie
mithilfe von Werkzeugen zum Schieben, ziehen, glatten, greifen etc. erstellt
werden. Wird haufig flr organische Objekte wie menschliche Kérper verwendet.

e KI-gestlitzte Modellgenerierung

KI-basierte Verfahren nutzen Machine-Learning-Modelle zur Erzeugung von
Geometrie oder Texturen. Aktuelle Text-to-3D- und Image-to-3D-Ansatze wie
Meshy, Rodin oder das Open-Source-Projekt Hunyuan-3D erzielen bereits
beeindruckende Ergebnisse, weisen aber nach wie vor deutliche Schwachen in
Bereichen wie Topologie’, Retopologie und UV-Mapping auf und sind somit
schwer in professionelle Workflows zu integrieren®.

Entsprechend spielen KI-generierte Modelle derzeit noch eine untergeordnete
Rolle in professionellen Workflows, werden aber zunehmend als unterstitzende
Werkzeuge eingesetzt.

e Prozedurale Modellierung

Beschreibt die regelbasierte, algorithmische Generierung von Geometrie.
Dieser Ansatz steht im Fokus dieser Arbeit und wird in Kapitel 2.5 ausflhrlich
behandelt.

6[5, S. 783].

7 Topologie bezieht sich bei Polygonalen 3D-Modellen auf die explizite Anordnung der
Geometrie. Grundsatzlich ist hierbei das Ziel mit mdglichst geringer Polygonanzahl einen
moglichst hohen Detailgrad zu erzielen, also die verwendete Geometrie méglichst
effizient zu nutzen.

85, S. 801].

e Photogrammmetrie:

Bezieht sich im 3D-Kontext auf die Ubertragung von Objekten der physischen
Welt in die digitale mithilfe von Bildern oder Scans und Photogrammetry
Software. Diese Technik ist besonders relevant fir die Erzeugung realistischer
Assets.

e Hybride Workflows:

Innerhalb moderner Produktionspipeline werden haufig verschiedene Verfahren
miteinander kombiniert. Beispielsweise durch die Generierung von Basismodellen
mithilfe von KI oder prozedurale Systeme und anschlieBende Handische
Uberarbeitung? .

Wahrend es keine genauen Zahlen bzgl. der Nutzung dieser Methoden in der
Videospiel-Industrie gibt, dominiert in der Praxis laut verschiedenen Quellen und
aus eigener Branchenerfahrung weiterhin die manuelle Modellierung, da sie
maximale kreative Kontrolle und unmittelbares Feedback erlaubt?°.

Wichtig zu erwahnen sind auch Asset-Packs, die zwar keine Form der Erstellung,
aber dennoch eine zentrale Méglichkeit zur Beschaffung von 3D-Modellen in der
Spieleentwicklung darstellen.

Gerade kleinere Produktionen, die Uber keine oder wenige dedizierte Artists
verfigen, greifen haufig auf Sammlungen vorgefertigter Assets zurlick, die
thematisch und stilistisch aufeinander abgestimmt sind.

Diese Vorgehensweise spart Zeit und Kosten, reduziert jedoch die gestalterische
Freiheit und Individualitat der Projekte. Das Vermischen verschiedener Asset-
Packs (Kitbashing) kann dabei ebenfalls schnell zu stilistischen Inkonsistenzen
fuhren.

Es existieren zahlreiche Wege, 3D-Modelle zu erstellen oder zu beschaffen.
Unabhangig von der gewahlten Methode kénnen sich die resultierenden Modelle
in Stil, Detailgrad und technischer Umsetzung stark voneinander unterscheiden.
Im folgenden Kapitel wird die Low-Poly-Asthetik behandelt, die einen
spezifischen, stark stilisierten Ansatz der 3D-Modellierung beschreibt.

917, S. 120].
10[7,S.118].

2.3 Low-Poly Artstyle

Unter Low-Poly versteht man im Kern die Verwendung von 3D-Modellen mit
geringer Polygonanzahl. Dabei lassen sich jedoch zwei unterschiedliche
Bedeutungen unterscheiden:

1. Technisches Low-Poly
In der 3D-Grafik werden Modelle haufig in vereinfachter Form eingesetzt,
um Rechenleistung zu sparen und eine fllissige Darstellung zu
gewahrleisten. Beispielsweise bei der Verwendung sogenannter Level of
Detail (LOD)-Modelle'!, bei denen mit zunehmender Entfernung zum
Betrachter ein Objekt durch eine weniger detaillierte Version ersetzt wird.
Solche Low-Poly-Modelle entstehen also aus Griinden der Optimierung und
dienen primar der Performance-Steigerung.

2. Stilistisches Low-Poly (Artstyle)
Davon abzugrenzen ist der bewusste Einsatz von Low-Poly-Formen als
kUnstlerische Stilrichtung. Dieser Ansatz hat seine Wurzeln zwar in den
technischen Limitierungen der 1990er-Jahre, wurde aber in den spaten
2010er-Jahren bewusst als asthetische Entscheidung in verschiedenen
Medien wieder aufgegriffen'? und durch Spiele wie ,Superhot"(2016), ,Poly
Bridge"(2016) oder ,Besiege™(2015) im Mainstream verbreitet.

Anders als beim technischen Low-Poly steht hier nicht die Optimierung,
sondern die Stilisierung im Vordergrund. Low-Poly wurde aufgrund der
technisch bedingten Vergangenheit haufig als minderwertig angesehen ist
aber heutzutage mehr als etabliert in der Szene.

Diese Arbeit bezieht sich mit dem Low-Poly-Begriff auf den Low-Poly-Artstyle und
nicht auf den primar technischen bedingten Begriff.

Innerhalb des Low-Poly-Artstyles haben sich verschiedene visuelle Auspragungen
etabliert, die sich im Grad der Abstraktion, im Umgang mit Farben sowie in der
Detailtiefe unterscheiden. Eine der popularsten Stilrichtungen ist der von Synty
Studios gepragte Low-Poly-Look. Dieser Stil zeichnet sich durch folgende
Merkmale aus:

Flat Shading ohne ausgepragte Licht- und Materialeffekte, klare, gesattigte
Farben, minimale oder vollstandig fehlende Texturen, haufig einfache
Farbflachen, eine cartoonartige, stilisierte Formsprache, reduzierte, aber liebevoll
gestaltete Details, die trotz geringer Polygonanzahl eine hohe Lesbarkeit
gewahrleisten

Synty Studios pragt diesen Stil seit vielen Jahren maBgeblich und bietet
umfangreiche Low-Poly-Asset-Pakete in zahlreichen

Themenbereichen an. Diese erfreuen sich insbesondere bei Indie-
Entwicklern groBer Beliebtheit und gehdren im Unity Asset Store
regelmaBig zu den meistverkauften Paketen. Im folgenden
Kapitel prifen wir diese Annahmen.

11[7,S.123].
12 [8, S. 1].

2.3.1 Grinde fur Low-Poly im LPTK

Flr die Erforschung der Blender Geometry Nodes bietet sich der Low-Poly-
Artstyle aus mehreren Grinden an. Ein zentraler Aspekt ist die starke in 2.1
beschriebene Relevanz von Unity im Indie-Segment. Wie zuvor dargestellt,
greifen viele kleine Studios und unabhangige Entwickler auf Unity zurick.
Innerhalb des Unity Asset Store wiederum zahlen Low-Poly-Assets seit Jahren zu
den beliebtesten und meistverkauften Inhalten (Abbildung 4). Diese Beliebtheit
unterstreicht, dass der Stil im Indie-Bereich weit verbreitet und akzeptiert ist.

Eine Auswertung (Anhang A4) der 100 meistverkauften Assets im Unity Asset
Store (Abbildung 6) zeigt die Relevanz der Low-Poly-Assets.

1. Ring 1: Art-Assets bilden mit
46,0% die groBte Kategorie
und spiegeln die hochste
Kaufbereitschaft flr
vorgefertigte Inhalte wider.

2. Ring 2: Innerhalb der Art-
Kategorie stellen 3D-Modelle
mit 39,1% die wichtigste
Untergruppe dar.

3. Ring 3: Die entscheidende
Erkenntnis liefert der auBere
Ring: 72,2% dieser
kommerziell erfolgreichen
3D-Assets setzen auf einen 3D-Models
Low-Poly-Look.

Art 46%

Dartber hinaus liegt der

Schwerpunkt im Low-Poly-Stil Abbildung 6: Sunburst-Chart Darstellung der
starker auf der Geometrie der " Top 100 paid Assets", 30.09.2025 (eigene
Modelle, wahrend aufwendige Darstellung) Quelle der Daten in A4.

Materialien und komplexe PBR-

Texturen in den Hintergrund treten. Dies macht den Ansatz besonders geeignet
fur die Erforschung und Umsetzung prozeduraler Modellierung in Blender
Geometry Nodes. Gleichzeitig reduziert sich dadurch die Fehleranfalligkeit beim
Export in externe Game Engines. Komplexe Shader-Setups, UV-Mapping oder
Materialkombinationen, die haufig zu Problemen fiihren kénnen, spielen im Low-
Poly-Kontext durch die simplen Materialien eine deutlich geringere Rolle.

SchlieBlich flieBt in die Entscheidung fiur Low-Poly flir das LPTK auch meine
jahrelange Erfahrung im Bereich der Low-Poly-Modellierung ein. Die Vertrautheit
mit den typischen Anforderungen und Workflows ermdglicht es, ein praxisnahes
Werkzeug zu entwickeln, das sich gezielt an den Bedirfnissen von Indie-
Entwicklern orientiert. Zur Erstellung solcher Modelle haben sich, wie in Kapitel
2.2.2 beschrieben, verschiedene Softwarelésungen etabliert.

Eine im Indie-Kontext besonders bedeutende ist Blender, auf die im folgenden
Kapitel naher eingegangen wird.

Relatives Google Such-Interesse (0-100)

2.4 Blender im Indie-Spielentwicklungs Kontext

Blender wurde 1998 veroéffentlicht und ist ein generalisiertes 3D-Softwarepaket,
welches eine Vielzahl an Funktionen flir unterschiedliche Branchen und
Anwendungsfelder bietet. Besonders seit der Umstellung zur Open-Source Lizenz
im Jahr 2002 wachst Blender stetig und hat besonders in den letzten Jahren
erheblich an Relevanz im 3D-Bereich gewonnen (Abbildung 7).

Google Trends Such-Interesse Uber Zeit (2020 - 2025): Blender hervorgehoben

Suchanfrage wsssm Blender Autodesk 3ds Max Autodesk Maya Cinema 4D Unreal Engine

100
80
60
40

20

2020 2021 2022 2023 2024 2025
Datum

Abbildung 7: Google Trends Such-Interesse Populdrer 3D-Programme, Blender Hervorgehoben. Datenquelle: Google
Trends, Suchbegriffe im Zeitraum 01.01.2020 - 24.10.2025 (eigene Darstellung).

Dieser Zuwachs lasst sich sowohl durch den breiten Funktionsumfang als auch
durch die niedrige Einstiegshlirde und den freien Zugang erklaren.

Blender bietet Oberflachen zur Modellierung, Animation, Texturierung, Rigging,
UV-Mapping etc. und deckt die meisten Bedlirfnisse an eine moderne 3D-Pipeline
in einem Tool ab. Besonders im Indie-Segment und in kleineren Studios hat sich
Blender als zentrales Werkzeug etabliert!3 .

Die Kombination aus Kostenfreiheit, einer aktiven Entwickler-Community und
Integration moderner Werkzeuge, wie der Geometry Nodes macht es zu einer
attraktiven Alternative zu kommerziellen Lésungen.

Gerade fur Low- oder No Budget Produktionen ist Blender die einzige Méglichkeit
und spart enorme Kosten. Der Einsatz vom weitverbreiteten Modellierungs- und
Animations-Standard , Autodesk Maya" verursacht beispielsweise jahrliche
Lizenzkosten von 2119 € pro Nutzer'* und ist flr kleine Teams ohne Budget
nicht maoglich.

Was Blender durch seine Open-Source-Natur im direkten Kundensupport
gegenlber kommerzieller Alternativen fehlt, kompensiert es durch seine sehr
aktive und offene Community. Es gibt zu beinahe jeder Frage eine Antwort oder
ein passendes Tutorial, wodurch die Einstiegshirde sowohl finanziell als auch im
Nutzungskontext deutlich niedriger ist als bei den kostenpflichtigen Alternativen.
Auch flr Forschungsprojekte, bei denen Flexibilitat, Anpassbarkeit und
Transparenz im Vordergrund stehen, bietet Blender durch seine offene
Architektur klare Vorteile und lasst sich vergleichsweise einfach erweitern,
beispielsweise durch selbst erstellte Python-Skripte oder Addons.

13 [9].
14 [10].
10

2.4.1 Blender Add-ons

Blender bietet im ,Scripting"-Tab die Méglichkeit, mithilfe der Blender Python API
(bpy)t> Python-Skripte direkt im Editor auszuflihren oder eigene Erweiterungen
zu entwickeln. Diese Skripte werden in Form von sogenannten Modulen erstellt
und kdénnen bestimmte Funktionen oder komplexe Abldufe automatisieren.

Ein einfaches Beispiel flir ein Skript, welches alle Objekte in der aktuellen Szene verschiebti® :

. import bpy

. scene = bpy.context.scene
. for obj in scene.objects:
obj.location.x += 1.0

Add-ons bauen auf dieser Funktionalitat auf. Sie erlauben es mehrere Skripte zu
einer strukturierten Erweiterung zusammenzufassen und ermdglichen eine
direkte Integration in Blenders Benutzeroberflache. Dadurch kénnen Entwickler
und Technical Artists den Funktionsumfang von Blender gezielt erweitern und an
spezielle Workflows anpassen.

Im Kontext professioneller Workflows sowie spezialisierter Anwendungen stellen
Add-ons ein zentrales Werkzeug zur Erweiterung der Funktionalitat von Blender
dar. Community-erstellte Add-ons tragen neben direkten Quellcode-Beitragen
wesentlich zur kontinuierlichen Weiterentwicklung der Software beil’. Besonders
relevante Open-Source-Add-ons werden mitunter direkt in die
Standarddistribution von Blender integriert und als native Erweiterungen
bereitgestellt, prominente Beispiele sind Add-ons wie LoopTools'® oder der
NodeWrangler®®,

Neben Open-Source-Lésungen existiert ein breites Spektrum kommerzieller Add-
ons, die spezifische Anwendungsprobleme I6sen und Uber Drittanbieter
vertrieben werden. Der gréBte Marktplatz fir Blender-Erweiterungen ist
Superhive (ehemals Blender Market), liber den eine Vielzahl sowohl
kommerzieller als auch frei verfigbarer Add-ons angeboten wird.

Die Installation von Add-ons ist sehr einfach und kann Uber das interne
Erweiterungs-Panel von Blender erfolgen, was primar fir Open-Source-Add-ons
vorgesehen ist, oder alternativ manuell durch das Einfligen der entsprechenden
Dateien der lokalen Festplatte. Diese Flexibilitat erlaubt es Anwendern, die
Softwareumgebung gezielt an spezifische Anforderungen anzupassen.

15711].
16112].
7 113].
18 LoopTools, fligt mehrere Modellierungswerkzeuge hinzu:
https://extensions.blender.org/add-ons/looptools/?utm_source=blender-4.5.3-lts.
19714].

11

2.5 Procedural Content Generation

Procedural content generation (PCG) in Videospielen beschreibt die
algorithmische Generierung von Spielinhalten (Game-Assets) mit limitiertem oder
indirekten Nutzerinput?°.

PCG ist in der Videospiel-Entwicklung weit verbreitet
und bezieht sich auf verschiedenste Arten von
Inhalten. Beispiele flir PCG reichen von prozeduralen
Shadern und Materialsystemen, Uber die
algorithmische Erzeugung von Meshes und
Landschaften bis hin zu kompletten Spielwelten.
Daruber hinaus kénnen beispielsweise auch Musik,
Animationen oder Partikelsysteme durch prozedurale
Verfahren erzeugt werden??,

Seine Urspringe hat PCG Anfang der 1980er Jahre.
Spiele wie ,Rogue™ (1980) und ,Elite" (1984) werden
in diesem Kontext haufig als Vorreiter genannt?2.
Damals war PCG und vor allem die prozedurale Abbildung 8, Prozeduraler Shader fir
Levelgenerierung fiir openworld-artige Spiele als eine g‘;’;g?é,ﬁliz)e"e Glasmalerei (eigene
Art Kompressionstechnik unersetzlich?® . Zur

damaligen Zeit war es unmadglich, groBe Mengen an

vordefinierten Daten dauerhaft zu speichern. So waren die Entwickler von Elite

nicht in der Lage gewesen acht spielbare Galaxien mit jeweils 256 vordefinierten
Planeten auf der originalen ,BBC Micro“-Diskette speichern kénnen.

Seither hat sich PCG zu einem zentralen Bestandteil moderner Spieleentwicklung
entwickelt und findet sich in beinahe allen aktuellen Titeln wieder, wobei die
genaue Implementation und Nutzungsweisen sich komplett voneinander
unterscheiden kénnen.

So nutzt ,The Elder Scrolls IV: Oblivion* (2006) prozedurale Systeme, um die
Spielwelt mit Basis-Vegetation zu flllen, welche im Anschluss manuell von Artists
bearbeitet wird. ,Minecraft® (2009) hingegen generiert seine Spielwelten
vollstandig prozedural. Borderlands (2009) wiederum verwendet prozedurale
Generierung um 17 Millionen verschieden Waffentypen mit unterschiedlichen
Eigenschaften zu erzeugen.

Im Zuge dieser Arbeit steht die prozedurale Modellierung im Vordergrund, welche
als eine zentrale Unterkategorie von PCG zu verstehen ist und sich auf die
algorithmische Generierung und Manipulation von Geometrien bezieht.

20 [15, S. 14].
2116, S. 62].
22 [15, S. 4].
23[17, S. 502].
12

2.5.1 Prozedurale Modellierung

Wie in 2.2.2 angesprochen ist die prozedurale Modellierung ein wichtiger Ansatz
zur Geometrieerzeugung im Kontext der modernen Spieleentwicklung?*. Im
Gegensatz zur manuellen Modellierung beschreibt sie die Generierung und
Manipulation von 3D-Geometrie auf Basis von definierten Regeln, Algorithmen
und Parametern. Sie erlaubt es, komplexe Strukturen wie Gebaude, Vegetation
oder ganze Landschaften effizient und reproduzierbar zu erzeugen?>,

Der Begriff an sich wird flr eine Vielzahl unterschiedlicher Methoden und
Systeme verwendet und bezieht sich dabei ebenso auf einfache prozedurale
Modifikationen von handmodellierten Basisgeometrien als auch die automatische
Erzeugung hoch komplexer Terrains.

Die Prozedurale Modellierung hat sich in den letzten Jahren stetig
weiterentwickelt und es wurden verschiedenen Ansatze zur Generation
verschiedener Objektetypen entwickelt. Diese werden dabei aber durch ihre
parametrische und non-destruktive Natur vereint.

Historisch betrachtet, gibt es verschieden Wegweisende Ansatze. Fundamental
sind dabei beispielsweise die 1968 von Aristid Lindenmayer eingefihrten L-
Systeme, welche zur Erforschung pflanzlicher Wachstumsprozesse entwickelt
wurden und durch iterative Anwendung einfacher Regeln komplexe Strukturen
erschaffen kénnen?6.

In diesem Kontext ebenfalls haufig erwahnt, sind die Shape Grammars, welche
haufig zur Erzeugung raumlicher Geometrien, bspw. im Architektur-Kontext,
verwendet werden?’.

Wahrend friihe Implementation Uberwiegend textuell, skript-oder codebasiert
waren?8, haben aktuelle Tools den Fokus zunehmend auf visuelle und oder
nodebasierte Workflows verschoben. Diese ermdglichen es, prozedurale Systeme
interaktiv, modular und zuganglich zu gestalten, stehen in Form von Blender
Geometry Nodes im Fokus dieser Arbeit und werden 2.5.5 genauer eingefiihrt.

Zunachst werden die Vor- und Nachteile des prozeduralen Ansatzes besprochen.

24 [18].
25 [18].
2619, S. 1].
27120, S. 615].
28 [21].
13

2.5.2 Vor- und Nachteile prozeduraler Systeme

Prozedurale Verfahren bieten gegenlber der klassischen, manuellen Erstellung
von Assets eine Reihe signifikanter Vorteile.

Sie ermdglichen eine effiziente und skalierbare Generierung groBer Mengen an
Inhalten die, wie in 2.2 beschrieben, einen zentralen Kostenfaktor der
Spieleentwicklung darstellen. Ein einmal aufgesetztes System kann theoretisch
unendlich viele Varianten eines 3D-Modells, beispielsweise eines Levels oder
Baumes, erzeugen?.

Darlber hinaus bieten prozedurale Systeme non-destruktive Workflows, bei
denen Anderungen an Parametern jederzeit vorgenommen werden kdnnen, ohne
die zugrunde liegende Struktur dauerhaft zu verandern. Dadurch lassen sich
Varianten schnell erzeugen und Anpassungen effizient durchftihren.

Trotz dieser Starken stehen prozedurale Systeme vor verschiedenen
Herausforderungen.

Die Entwicklung eines funktionierenden Regelwerks ist komplex und erfordert
eine sorgfaltige Definition der Generierungslogik, um konsistente und asthetisch
Uberzeugende Ergebnisse zu erzielen. Zur definiton ist eine Kombination aus
kunstlerischer und technischer Kompetenz erforderlich3°, wodurch eine groBe
Einstiegshirde entsteht.

Die manuelle Erstellung eines einzelnen Assets ist im Regelfall schneller als das
Aufsetzen eines komplexen Systems, welches dieses Asset automatisch
generieren kénnte. Auch wenn es theoretisch mdglich ist, sollte nicht jedes
Asset mit einem prozeduralen System erzeugt werden. Das , Ten Thousands
Bowls of Oatmeal Problem” wird in diesem Kontext haufig genannt und soll
zeigen, dass die unendliche Variation eines uninteressanten Assets, das Objekt
nicht interessanter macht3!.

Daruber hinaus neigen PCG-Systeme dazu, wiedererkennbare Muster zu
erzeugen welche von Spielern erkannt werden kdnnen. Ebenso schranken sie die
kiinstlerische Kontrolle ein, da spezifische Anderungen in den meisten System
nicht leicht zu definieren sind.

Trotz dieser Einschrankungen gilt prozedurale Modellierung heute als zentrale
Technologie flr skalierbare, wiederverwendbare und effizient produzierte Assets.
Moderne Node-basierte Systeme wie Houdini oder Blender Geometry Nodes
bieten inzwischen Mdéglichkeiten, diese Verfahren intuitiv zu gestalten und gezielt
mit manuellem Design-Input zu kombinieren. Dieser hybride Ansatz, aus
algorithmischer Generierung und klnstlerischer Kontrolle, wird in der Forschung
als ,mixed authorship™ bezeichnet und im folgenden Kapitel naher betrachtet.

29 [18].
30 [17, S. 513].
31122, S. 3].
14

2.5.3 Automatic Generation versus Mixed Authorship

FlUr Spiele mit nahezu unendlichen Open-Worlds, wie beispielsweise das bereits
erwahnte Minecraft (siehe 2.5), ist prozedurale Generierung unumganglich. Diese
bendtigen ein Runtime PCG-System. Runtime-Systeme generieren Inhalte
dynamisch auf dem Gerat des Nutzers bevor und/oder wahrend der Spieler das
Programm ausfihrt und die Welt erkundet. Diese Implementation funktioniert
also ohne nachtraglichen Design-Input, muss autonom spielbare Welten
erzeugen und wird in der Literatur als ,Automatic generation" bezeichnet3? .

In der Realitat bendétigen allerdings nur wenige Spiele diese vollstandige
Prozeduralitat zur Laufzeit. Die meisten Titel setzen auf vordefinierte Levels,
welche gréBtenteils handisch von Designern und Artists entworfen und umgesetzt
werden.

Aber auch hier kénnen prozedurale ,Design-Time"-
Systeme33 auf eine spannende Weise eingesetzt werden.
Hierbei geben Designer oder Spieler gezielten Input,
welcher durch die prozedurale Logik umgewandelt wird.
In der wissenschaftlichen Literatur, beispielsweise in
Procedural Content Generation in Games (2017), wird
dieses Paradigma als ,mixed authorship"
definiert34.

Dieses Prinzip wird in Abbildung 9 beispielhaft
visualisiert. Die Basis ist der nicht
eingefarbte Bereich des Terrains, der
mithilfe der exponierten Parameter des
Systems erzeugt wurde. Die grin
Uberlegten Meshes sind handisch vom
Designer hinzugefligte Geometrien, welche
dem prozeduralen Base-Mesh als Union-Boolean-
Operation hinzugefligt werden. Die rot Uberlegten
Meshes sind ebenfalls manuell erstellte Geometrien,
welche dem prozeduralen Terrain (samt der Union-
Meshes) als Difference-Boolean

Abbildung 9: Beispielhafte Darstellung des
abggzogen V\{erden. S0 kann der ,ProceduralTerrain' Systems des LPTK mit visualisierten
Designer aktiv auf das prozedurale Boolean-Meshes (eigene Darstellung).

Terrain aufbauen.

Die in 2.5.2 besprochenen Nachteile von begrenzter Kontrolle, inkonsistenter
Qualitat und repetitiven Mustern werden hierbei durch die Méglichkeit zur
manuellen Editierung von Designern und Artists mit minimalem Aufwand
umgangen.

327115, S. 10].
33 Gegenstlick zu Runtime-Systemen. Sie werden wahrend der Level-Erstellung genutzt,
die resultierenden Assets sind zur Laufzeit jedoch statisch.
34115, S. 10].
15

2.5.4 Moderne Node-Based-Tools

Flr die prozedurale Modellierung haben sich in den letzten Jahren zunehmend
visuelle, Node-basierte Systeme etabliert. Diese ermdglichen es, komplexe
Ablaufe nicht ausschlieBlich tGber Code, sondern lber visuell verbundene
Funktionsblécke abzubilden. Dadurch kédnnen auch Artists und insbesondere
Technical Artists ohne tiefgehende Programmierkenntnisse prozedurale Systeme
erstellen, verstehen, anpassen und erweitern.

Da die meisten prozeduralen Systeme visuelle Ergebnisse erzeugen, sind
technische und kiinstlerische Aspekte eng miteinander verknlpft3> . Dies hat zur
starken Etablierung Node-basierter Workflows geflihrt. Vergleichbar mit Shader-
Graph-Systemen, die ebenfalls von einer visuellen Darstellung komplexer
Zusammenhange profitieren.

Node-basierte Systeme bieten eine Reihe von Vorteilen gegentber klassischen
Skript- oder Code-basierten Lésungen. Der Aufbau aus einzelnen, modularen
Funktionsknoten ermdéglicht non-lineares Arbeiten, einfache Wiederverwendung
von Teilen eines Setups und eine hohe Transparenz im Entstehungsprozess.
Dadurch lassen sich selbst komplexe Beziehungen zwischen Eingabeparametern
und Ausgaben visuell nachvollziehen.

2.5.4.1 Houdini als Industriestandard

Das bekannteste und am weitesten entwickelte System in diesem Bereich ist
Houdini von SideFX.

Houdini gilt in der VFX- und Game-Industrie als absoluter Industriestandard fir
prozedurale Modellierung und ist in den meisten groBen AAA-Studios im Einsatz.
Das gesamte Programm basiert auf einem Node-Graph-Prinzip, das alle Bereiche
von Geometrieerzeugung Uber Partikelsimulationen bis hin zu Materialsystemen
miteinander verbindet.

Ein zentrales Merkmal ist die Houdini Engine, welche die direkte Integration
prozeduraler Assets in Game-Engines wie Unreal und Unity erméglicht3®. Dadurch
kdnnen Artists prozedurale Assets auBerhalb von Houdini kontrollieren,
Parameter anpassen und Anderungen direkt in der Engine sichtbar machen.

2.5.4.2 Spezialisierte Lésungen

Neben Houdini existieren auch einige industrierelevante spezialisierte
Anwendungen, die auf bestimmte Bereiche des PCG-Kosmos fokussiert sind.
Beispiele sind World Machine3” fur Terrain-Generierung oder Material Maker3® zur
prozeduralen Material-Generierung. Diese Tools sind zwar leistungsfahig, aber
stark auf ihren jeweiligen Anwendungsbereich limitiert. Generalisten wie Houdini
oder Blender Geometry Nodes bieten eine deutlich hohere Anpassbarkeit und
sind zur Erstellung einer prozeduralen Asset-Library mit Fokus auf Geometrie-
Generierung quasi unumganglich.

35[17,S. 513].
36 https://media.sidefx.com/uploads/products/engine/hengine_games_2023.pdf
37 https://www.world-machine.com/
38 https://www.materialmaker.org/
16

2.5.5 Blender Geometry Nodes

Mit der Veroffentlichung von Blender 2.92 (2021) wurden die Geometry Nodes
als Node-basiertes, prozedurales und non-destruktives System zur Erstellung und
Manipulation von Geometrien eingeflihrt. Sie erweitern das bestehende Modifier-
Konzept von Blender um eine visuelle Programmierebene, in welche Geometrie
Uber einen Node Graph beschrieben werden kann3°.

Einzelne Node Setups kénnen als Modifier Objekten hinzugefligt werden. Die
Objektgeometrie durchlauft dabei den Modifier-Stack von oben nach unten. Jeder
Geometry-Node-Tree kann in diesem Stack wie ein einzelner Modifier auftreten
und erhalt Uber die Group Input Node seine Eingabedaten. Innerhalb des Node-
Trees definieren verschiedene Operation Nodes (z. B. Set Position, Extrude Mesh,
Distribute Points on Faces) die eigentlichen prozeduralen Schritte. Uber die Group
Output Node wird die modifizierte Geometrie anschlieBend zurlick an den
Modifier-Stack Uibergeben.

Geometry @ ® Geometry ® Geometry
O Selection

Position

Offset
X
Y
iz

Abbildung 10: Beispielhafter Node Tree (eigene Darstellung).

Abbildung 10 zeigt beispielhaft, wie die Geometrie des Wirfels, auf welchen der
Geometry Nodes Modifier angewendet wurde aus der Group

Input Node in das Socket*® der Set Position Node gezogen

wird. Uber diese wird jeder Punkt der Geometrie um einen

Meter entlang der Z-Achse verschoben und anschlieBend

Uber die Group Output Node wieder in den Modifier

Stack Ubergeben. Abbildung 11 visualisiert diese

Veranderung. Der graue Wiirfel stellt die Geometrie vor \
der Set Position Node dar, der orangenen zeigt den
Wirfel nach der Operation.

Die in die Group Input Node eingespeiste Geometrie

umfasst dabei mehr als nur die reinen Positionsdaten der
einzelnen Vertices. Sie stellt ein Datenpaket dar, welches
samtliche Attribute des Objekts wie Materialzuweisungen, UV-
Koordinaten, Normalen oder benutzerspezifische Daten sppiiqung 11: Visualisierung des Effekts der

enthalt. Diese Attributebene ist die Basis der in Abbildung 10 gezeigten Set Position Node

prozeduralen Logik. auf einem Wiirfel. Grauer Wiirfel vor,
oranger nach der Set Position Operation
(eigene Darstellung).

3% Innerhalb dieser Arbeit wird wahrend der konkreten Beschreibung der Geometry Nodes
eine Vielzahl an englischen Fachbegriffen verwendet. Um den Lesefluss zu erhalten,
wurde auf eine kursive Markierung dieser Begriffe bewusst verzichtet.
40 Sockets sind die In- und Outputs einer Node.

17

2.5.5.1 Das Attribut-Konzept

Um Geometry Nodes genauer zu verstehen, ist das Konzept der Attribute
grundlegend.

Innerhalb der Geometry Nodes sind Attribute ein generischer Begriff zur
Beschreibung eines pro Element gespeicherten
Daten-Blocks*!. Attribute sind die Basis der

. v Vi
prozeduralen Manipulation. Sie ermdglichen es B ’
- Y] position
Daten gezielt zu lesen, zu modifizieren und neu zu Y Cube 5 _—
schreiben. Zealosed 1 1.000
v Geometry 2 -1.000
Jedes Attribut wird dabei durch vier Komponenten 3 ~1.000
'h‘ (Geometry)
definiert: “ Lo
v Domain 5 1.000
1. Name, eindeutige Bezeichnung v]7 Mesh 6 -1.000
2. Domain £J Vertex ! 000
3. Datentyp, Art der gespeicherten Werte P Edge

W’ Face

4. Wert, konkreter Wert

L Face Corner

Einen Uberblick iber die verschiedenen Attribute
und deren Komponenten kann man sich im
Spreadsheet machen (Abbildung 12). Betrachtet
man beispielsweise den verschobenen Wirfel. Er
besteht aus acht Vertices. Die Set Position Node
arbeitet direkt mit dem positions-Attribut der
einzelnen Vertices. Die beispielhafte Gliederung
des Positions-Attributs des Vertex mit Index O
(grun markiert) sieht nach der Verschiebung wie folgt aus:

Abbildung 12: Spreadsheet-Ubersicht der Vertex
Domain eines Wiirfels (eigene Darstellung).

e Name: position (rot markiert)

e Domain: Point (Vertex) (blau markiert)

e Datentyp: Vektor (3D-Vektor) (Implizit durch Wert)

e Wert: (1, 1, 2) (X-, Y- und Z-Position) (gelb markiert)

Verschieden Arten von Geometrie verfligen je nach Domain Uber verschiedene
Standardattribute. So verfligen Faces beispielsweise lber das sharp-face-
Attribut, welches als Boolean gespeichert wird und determiniert, ob ein Face
smooth oder sharp dargestellt werden soll. Points Uber Positionen, wie die
Vertices des Beispielwurfels.

In Blender 4.5 stehen verschieden Datentypen zur Verfligung, welche innerhalb
des Node Trees uber verschieden Farben visuell kodiert werden (siehe Abbildung
13) und welche in ihrer Komplexitat stark variieren. Von der Einfachheit eines
Booleans bis hin zur komplexen 4x4 Matrix.

Zentral zum Verstandnis dieser Arbeit ist die Unterscheidung folgender
Datentypen:

QO Float @ integer (O Boolean @ Vedor (O Color

Abbildung 13: Ubersicht der fiir das LPTK relevanten Datentypen (eigene Darstellung).

41 [23].
18

2.5.5.2 Das Feld-Konzept (Fields)

Die prozedurale Arbeitsweise von Geometry Nodes wird maBgeblich durch das
Feld-Konzept (Fields) ermdglicht. Im Gegensatz zu klassischen Attributwerten,
die als statische Werte pro Geometrieelement gespeichert werden, stellen Fields
Funktionen dar, die einen Wert in Abhangigkeit eines Kontextes generieren*?. Ein
Feld reprasentiert somit eine dynamische Berechnung, die flir jedes
Geometrieelement (wie einen Vertex, eine Edge oder eine Instanz) ausgefihrt
wird, wenn der Node-Tree verarbeitet wird.

Die Formen der Sockets zeigen hierbei an, welche Sockets Fields und welche
regularen Daten sind.

e Kreis: zeigt an, dass ein einzelner Wert erwartet wird, ein Feld kann nicht
verbunden werden.

e Diamant: zeigt an, dass ein Feld erwartet wird, ein einzelner Wert kann
aber angenommen werden.

e Diamant mit Punkt: Zeigt an, dass ein Socket, welches ein Feld annehmen
kann, momentan einen einzelnen Wert annimmt.

v Group Input v Set Position

Geometry

| v Store Named Attribute
Boolean v
Point v | v Group Output

Geometry ® Geometry

v Greater Than

V' Separate XYZ
® Float ‘ . position HighPoints

-1.000
-1.000

1.000

1.000
-1.000
-1.000

1.000

1.000

Greater Than

Vv Position

Position Vector
J |

Abbildung 14: Field-basierte Attributzuweisung (eigene Darstellung).

N o a A NN B O

Abbildung 13 zeigt eine dynamische Attributzuweisung des
,HighPoints' Boolean Attributs auf der ,Point"-Domain. Die Abbildung 15: Darstellung der Vertex
Position-Node liefert dabei fiir jeden Vertex der Geometrie ~ D0main des Spreadsheets nach der

. . R . L. i HighPoints' Zuweisung (eigene
einen Wert, dieser wird in diesem Beispiel durch eine Darstellung).
Separat XYZ-Node auf den Z-Wert reduziert. Die Greater
Than Node bestimmt folgend, einen Schwellwert tUber
welchem Z-Wert (0.000) eine ,HighPoints' Zuweisung

stattfindet.

Wird das Objekt verandert, beispielsweise indem die Vertices
verschoben werden, wird die Attributzuweisung neu evaluiert.

42 https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/fields.html

19

Abbildung 16: Hervorhebung der Vertices mit
zugewiesenem 'HighPoints'-Wert durch Rote
Kugeln (eigene Darstellung).

2.5.5.3 Entwicklung der Geometry Nodes und Arbeitsumgebung

Auch wenn die Grundkonzepte Uber die meisten Updates hinweg konstant
bleiben, befinden sich Blenders Geometry Nodes weiterhin in aktiver
Entwicklung. Mit nahezu jeder neuen Blender-Version werden zusatzliche Nodes
eingeflihrt, bestehende Uberarbeitet oder deren Funktionsumfang erweitert.
Bereits wahrend der Bearbeitung des Praxisprojekts (Mai - Juli 2025), wurden
mit der Veroffentlichung von Blender 4.5 LTS3 zahlreiche neue und verbesserte
Nodes hinzugefligt, wahrend einige altere als deprecated markiert wurden.

Geometry Nodes schlieBen damit die Licke zwischen klassischer Modellierung
und prozeduralen Systemen und bieten eine zunehmend leistungsfahige und frei
zugangliche Alternative, die insbesondere flr Artists und kleinere Studios, bei
welchen Blender ohnehin im Einsatz ist, attraktive Mdglichkeiten eréffnet.

Modifier-Stack

Geomeiry Node Editor

Abbildung 17: Geometry Nodes Oberflédche in Blender 4.5 am Beispiel des , Palisadel"-Node Trees
(eigene Darstellung).

Die Darstellung (Abbildung 17) visualisiert, wie der Geometry Node Editor
(zentral unten) prozedurale Logik flir das ,Palisade"-Objekt (oben rechts)
definiert und das Ergebnis Uber die Group Output Node in den Modifier-Stack
(unten rechts) Ubergibt, um die finale Geometrie im 3D-Viewport (zentral oben)
aus der Basis-Kurve zu erzeugen.

43 https://www.blender.org/download/releases/4-5/

20

3. Methodik

Die theoretischen Grundlagen bilden damit das fachliche Fundament dieser
Arbeit. Auf dieser Basis widmet sich das folgende Kapitel der Methodik sowie der
konkreten Zielsetzung des Low-Poly-Tool-Kits (LPTK).

Es beschreibt, wie aus den zuvor erlauterten Anforderungen der
Spieleentwicklung, den Eigenschaften polygonaler 3D-Modelle und den
Potenzialen prozeduraler Verfahren ein spezifischer Ansatz flir die Entwicklung
einer prozeduralen Asset-Bibliothek abgeleitet wurde.

3.1 Anforderungen an die entwickelte Asset-Bibliothek

Die zentrale Anforderung an das LPTK ldsst sich in einem Satz definieren.

Entwickler mit minimaler 3D-Erfahrung sollen mit Hilfe des LPTKs in der Lage
sein, mittelalterliche Low-Poly-Welten nach ihren Vorstellungen zu erstellen,
diese jederzeit in einem non-destruktiven Workflow anzupassen und
anschlieBend mit geringem Aufwand in die Game-Engine ihrer Wahl zu
importieren.

Ausgehend von diesem Leitgedanken sowie den in der Literatur von Shaker et al.
(2017, S. 6) beschriebenen ,Desirable Properties of a PCG Solution" ergeben sich
die folgenden spezifischen Anforderungen an das System:

1. Benutzerfreundlichkeit, eine einfache Bedienung, die auch Hobby- und
Solo-Entwicklern den Zugang ermdoglicht.

2. Kontrollierbarkeit, ein ausgewogenes Verhaltnis zwischen intuitiver Nutzung
und Parametern flr Feinjustierungen.

3. Optische Konsistenz, die generierten Assets sollen einen einheitlichen Low-
Poly-Look haben und sich an Synty-Qualitat orientieren.

4. Effizienz, eine deutliche Beschleunigung des Workflows im Vergleich zur
herkdmmlichen Modellierung.

5. Flexibilitat, non-destruktive Anpassungsmadglichkeiten sowie Erweiterbarkeit
durch Dritte mittels zusatzlicher Node Setups.

6. Kompatibilitat, einfache Exportierbarkeit der erstellten Modelle in gangige
Game-Engines wie Unity oder Unreal.

Zusatzlich zu den Anforderungen an das prozedurale System soll auch die
zugrunde liegende Software-Architektur des LPTK selbst unkompliziert aufgebaut
und einfach zu erweitern sein.

Um das LPTK zu entwickeln, missen zunachst die entsprechenden Werkzeuge
ausgewahlt werden. Diese Auswahl wird im folgenden Kapitel besprochen.

21

Anwendungshereich

3.2 Auswahl der Werkzeuge

3.2.1 Blender und Geometry Nodes als prozedurale Basis

Zu Beginn des Projekts fiel die Wahl auf Blender Geometry Nodes. Diese
Entscheidung beruhte darauf, dass meine bisherige 3D-Erfahrung auf Blender
basierte und der Einsatz eines vertrauten Werkzeugs es mir erlaubte, mich
unmittelbar auf die Erforschung der Geometry Nodes zu konzentrieren, anstatt
mich in ein anderes Programm einzuarbeiten.

Houdini war mir als Software zwar bekannt, ich konnte aufgrund unzureichender
Erfahrung mit prozeduraler Modellierung aber keine klaren Kriterien benennen,
welche flr oder gegen Blender sprechen wirden.

Blender bietet, wie bereits in 2.4 beschrieben, zudem Eigenschaften, die es
insbesondere im Indie-Kontext attraktiv machen: Es ist Open-Source, kostenfrei
verflgbar, stark generalisiert und in der Indie-Community sehr verbreitet
(Abbildung 18).

Top 5 Nutzungsbereiche von 3D-Software (Hervorhebung: Game Development)

Film & Animation 3624

Graphic Design 2551

Game Development 2366

Advertising

VFX 1759

[~}

500 1000 1500 2000 2500 3000 3500
Anzahl der Suchanfragen (Index)

Abbildung 18: What kind of work do you do with Blender? (Datenquelle: 2024 Blender User
Survey)44 (eigene Darstellung).

Houdini hingegen ist, wie in 2.5.4 beschrieben, etablierter Standard fir
professionelle PCG-Projekte. Die Nutzung von Houdini erfordert tiefgehendes
technisches Verstandnis, wodurch es sich fast ausschlieBlich an Spezialisten
richtet und deutlich weniger in der Indie-Szene verbreitet ist. Hinzu kommt, dass
kommerzielle Projekte fur die Verwendung von Houdini eine kostenpflichtige
Lizenz bendtigen, was jedoch haufig nicht in das Budget kleinerer Indie-
Produktionen passt.

3.2.2 Add-on statt Blenders integrierter Asset-Library

Seit Blender 3.0 gibt es in Blender ein integriertes Asset-Library-System#°,
welches ermdglicht Objekte, Materialien, Posen oder auch Geometry-Node-
Groups zentral zu speichern und mithilfe einer einfachen Drag-and-Drop-
Oberflache Gber mehrere Projekte hinweg zu nutzen.

44 [917.
45 [24].
22

Dieses Library-System ist mittlerweile der Standard fir kleinere Asset-Packs und
besonders fir klassische Assets wie statische 3D-Modelle, Materialien oder
HDRIs* eine unkomplizierte Lésung.

v View Select Catalog Asset mport Settings v
Vi Sel Catal A I Settil

LPTK_ASSETPACK vi&

ggv L Vo~ R
v Al ® + L] S
Food l l] - N ‘ ' ' .
[]) (] -] (] [] (] []

Nature] (]

Village Cucumber2 Cucumber3 Eggplantl Eggplant2 Fish Potatol Potato2 Potato3 Potato4

#} Unassigned

PotatosInBox Radish1 Radish2 RadishYoungl RadishYoung2 Birch Oak Pinel

| | u
FenceWoodenl FenceWooden2 Haybale LanternTall LanternTall MarketStand1 TargetStand Waterpump

Abbildung 19: Asset Browser UI der LPTK Asset-Library (eigene Darstellung).

Die Vision des LPTK geht jedoch Uber die reine Wiederverwendung klassischer
Assets hinaus. Das System soll nicht bloB das Platzieren von Inhalten
ermadglichen, sondern den Nutzer gezielt durch den gesamten Erstellungsprozess
bis hin zum Export fuhren.

Eine Implementierung des LPTK als eigenes Add-on bedeutet zwar einen
erheblichen Mehraufwand, bietet jedoch entscheidende Vorteile und macht den
Unterschied zwischen einem professionell nutzbaren Tool fir Dritte und einer
internen Library aus.

Vorteile eines eigenen Add-ons:

1. Mehr Kontrolle Gber den User-Flow wahrend des gesamten Prozesses.

2. Spezifische Einfligungslogik flr unterschiedliche Node Setups (z. B. mesh-
oder curve-basierte Operationen).

3. Ubersichtlichere Tooltips und ein konsistentes Interface.

4. Integration der Export-Funktionalitaten, ohne das Interface zu
fragmentieren.

Gerade fir weniger erfahrene Nutzer ist die integrierte Asset-Library in Blender
sowohl in der Benutzung als auch in der Installation kompliziert und nicht intuitiv.
Durch ein eigenstandiges Add-on lasst sich der Workflow klarer strukturieren,
wodurch das Tool insgesamt zuganglicher und effektiver wird.

46 HDRIs stehen im 3D-Kontext fur ,High Dynamic Range Environment Textures"
23

4. Umsetzung

Das vierte Kapitel behandelt die praktische Umsetzung des beschriebenen
Konzepts. Ziel ist es, zu zeigen, wie prozedurale Low-Poly-Assets mithilfe von
Blender Geometry Nodes und der Blender Python API zu einem funktionalen
Werkzeugsystem, dem LPTK, zusammengefihrt werden kénnen. 4’

Die Umsetzung gliedert sich in zwei Unterkapitel:

4.1

4.2

Geometry Node Trees:

Dieser Abschnitt widmet sich der Konzeption, Struktur und technischen
Umsetzung der prozeduralen Systeme innerhalb von Blender. Anhand
verschiedener Node Setups werden exemplarisch zentrale Konzepte
vorgestellt und erlautert.

Add-on-Entwicklung:

Aufbauend auf den prozeduralen Systemen beschreibt dieser Abschnitt
die Erweiterung von Blender um eine benutzerfreundliche Oberflache
und Automatisierungslogik. Mithilfe der Blender Python API wird das
LPTK als Add-on implementiert, um die erstellten Node-Systeme
zuganglich, modular und effizient nutzbar zu machen.

4.1 Entwicklung der Geometry Node Trees

In diesem Kapitel wird die Konzeption und Umsetzung prozeduraler Low-Poly-
Assets mit Blender Geometry Nodes behandelt. Ziel ist es, die grundlegenden
Prinzipien der Systemarchitektur verschiedener Systeme des LPTK zu erlautern
und zu zeigen, wie modulare, nicht-destruktive Workflows flir die Asset-
Erstellung umgesetzt werden kénnen.

Es existieren verschiedene Ansatze, prozedurale Generierung in
Produktionspipelines zu integrieren. In vielen Fallen werden solche Systeme als
Zwischenschritt oder Ausgangspunkt genutzt, um wiederkehrende Arbeitsschritte
zu automatisieren. Dieser Ansatz eignet sich vor allem fir gréBere Teams mit
spezialisierten Tools oder Engine-basierten Pipelines.

Das LPTK verfolgt einen alternativen Ansatz. Es richtet sich gezielt an kleinere
Teams oder Einzelentwickler, die in Blender arbeiten und einen direkten,
intuitiven Zugang zu prozeduraler Modellierung suchen. Entsprechend liegt der
Fokus weniger auf komplexer Pipeline-Integration, sondern auf Bedienbarkeit,
Modularitat und Stabilitat.

Zentral ist dabei die Idee der Non-Destruktivitat, jede Veranderung bleibt
reversibel und parameterbasiert steuerbar. Die Arbeit mit den LPTK-Systemen
soll sich soll sich in erprobte Arbeitsabldufe einpassen, vergleichbar mit einem
integrierten Level-Editor, der die Arbeit in Blender erleichtert.

Dartiber hinaus wurde bei der Entwicklung der einzelnen Node Trees auf eine
klare, erweiterbare Struktur geachtet, sodass sowohl eigene Anpassungen als
auch spatere Erweiterungen durch erfahrene Nutzer problemlos mdglich sind.

47 Selbstbenannte Konzepte werden dabei in einfachen Anfiihrungszeichen
gekennzeichnet.

24

Im Folgenden werden zunachst grundlegenden Konzepte anhand eines einfachen
Beispiel-Assets erlautert. AnschlieBend wird die Parametrisierung zur Steuerung
der Systeme vorgestellt, bevor vier ausgewahlte, konzeptionell unterschiedliche
Implementierungen des LPTK detailliert beschrieben werden.

4.1.1 Erste Experimente

Das Praxisprojekt zu dieser Arbeit stellt meinen ersten tiefergehenden
Berihrungspunkt mit Blenders Geometry Nodes und der prozeduralen
Modellierung im Allgemeinen dar. Um ein grundlegendes Verstandnis flr die
Funktionsweise, Méglichkeiten und Limitationen zu entwickeln, habe ich mich
zunachst primar mithilfe von Online-Tutorials sowie der Analyse bestehender
Systeme beschaftigt.

In dieser explorativen Anfangsphase entstanden verschiedene Node-Trees, von
denen einige als technische Grundlage spaterer Systeme dienten. Eines der
ersten Systeme, welches in abgewandelter Form in das LPTK integriert wurde ist
das ,Funky-Tree'-System.

Das System basiert auf einem Tutorial*® und verarbeitet freihand
gezeichnete Splines (Kurven) zu stilisierten Low-Poly-Baume.

Es ist dabei nicht vollprozedural, sondern instanziiert vormodellierte
Aste und Laub auf der gemalten Kurve und fligt dieser einen
konfigurierbaren Radius hinzu.

Die gemalte Kurve wird im ersten Schritt durch eine Resample Curve Node
neu abgetastet und anschlieBend in drei parallel ausgefiihrten Node-Gruppen
verarbeitet, deren Ausgaben danach wieder zusammengefligt werden.

Die ,TopLeaf'-Gruppe flihrt eine endpoint selection aus und instanziiert auf
dem obersten Punkt der Kurve das ,TopLeaf'-Model.

Die ,BranchesAndLeafs'-Gruppe instanziiert entlang der ‘
resample curve in die ,Branches'-Collection, welche zwei ;‘
Zweig-Varianten enthalt.

Wahrenddessen erzeugt die ,Trunk'-Gruppe mithilfe der Set Curve
Radius Node ein Mesh aus der neu abgetasteten Kurve.

AnschlieBend werden die separat erzeugten Geometrien mit
der Join Geometry Node zu einem Objekt zusammengefiihrt.
Abbildung 20 auf der folgenden Seite zeigt den Aufbau des

Node-Trees und visualisiert die Ergebnisse der einzelnen Gruppen.

Abbildung 20:Rendering eines
,FunkyTrees"' auf einem ,MeshTerrain'
(eigene Darstellung).

48 [25].

Instanziierung des ,TopLeaf'-Modells
am Endpunkt der Kurve

- "
[vTopleat D] Zusammenfiihrung der

GleichmaBiges Resampling TopLeaf Teilgeometrien durch Join Geometry

der Kurve mit Resample Curve

&) v ToplLeaf O
L. . Curve
Benutzerdefinierte Eingabekurve 5

N oplLeafScale
(Control Points dargestellt)

Instanziierung der ,Branch'-
Modelle entlang der Kurve

Generierung des Stammes
A Gber ,Curve-to-Mesh'-Prozess

<
A4
<

V Trunk

&) v NodeGroup O Abbildung 21: Node-Tree des ,FunkyTree'-
Curve . Systems mit visualisierten
VRS Verarbeitungsschritten (eigene Darstellung).

Um die prozeduralen Parameter des Systems zu steuern kann der Nutzer
entweder die Form der Kurve im 3D-Viewport anpassen oder die exponierten
Parameter des Systems konfigurieren. Die Parametrisierung von Geometry Nodes
wird im nachsten Kapitel anhand des ,FunkyTree'-Systems besprochen.

26

4.1.2 Parametrisierung anhand des ,FunkyTree'-Systems

Wie bereits in 3.1 beschrieben, stellt die Kontrollierbarkeit prozeduraler Systeme
eine zentrale Herausforderung dar. Einerseits sollen Nutzer in der Lage sein das
Objekt oder die Geometrie genau nach ihren Vorstellungen anpassen zu kénnen,
ohne in den Geometry Node Editor einsteigen zu mulssen, andererseits soll das
System den Nutzer auch nicht mit zu kleinteiligen Konfigurationsmadglichkeiten
erschlagen.

Die meisten Parameter im Node-Tree lassen sich Uber Sockets durch die Group
Input Node in den jeweiligen Geometry Nodes Modifier, wie in 2.5.5 beschrieben,
exponieren. Damit lassen sich interne Werte zuganglich machen, ohne in den
Node Tree navigieren zu mussen. Beispielsweise kann der Parameter
,JJrunkRadius' aus der internen ,Trunk'-Gruppe herausgeldst und direkt in den
Group Input Node verschoben werden (siehe Abbildung 22).

Vv Group Input

Geometry

TrunkRadius @,

VerticalSegments

TopLeafScale @,

LeafCount @

V Trunk

&)v NodeGroup

) Curve

—=a® TrunkRadius

Abbildung 22: Ausschnitt vom ,FunkyTree'-Setup mit Fokus auf der Group Input Node und der ,Trunk'-Gruppe
(eigene Darstellung).

Wird ein Parameter in den Group Input gezogen, + Group Sockets
erscheint dieser automatisch im Group Sockets Panel des F—
Node-Trees und wird dadurch konfigurierbar. Geometry
Innerhalb des Group Sockets gibt es in Blender die VBaSiC:::;adm
Mdéglichkeit, die exponierten Parameter flir optimale VerticalSegments
Nutzung zu spezifizieren. Es kdnnen Eingabedatentyp O Toplieeien

@ LeafCount

definiert, visuelle Gruppen (Panels) erstellt,
Wertebereiche begrenzt, passende Standardwerte
gesetzt und hilfreiche Tooltips eingefligt werden. Type @ Float v

Description Defines the radius of the trunk
In Abbildung 23 ist der ,TrunkRadius'-Parameter, des ST

,FunkyTree' Group Sockets ausgewahlt. Die Subtype Distance
Konfigurationsmadglichkeiten flir diesen Input sind Default

sichtbar. Der ,Type" zeigt den Datentyp des &2: -
,TrunkRadius', die Description ist der Tooltip, welcher e Value

beim Hovern lUber den Parameter im Modifier angezeigt T

wird. Der Subtype bestimmt die Darstellung im Modifier Structure Type Single

(Distance = Angabe des Wertes in Metern). Der Default

27

Abbildung 23: Group Sockets der "FunkyTree" Group
Input-Node, einseh- und konfigurierbar im Node-Backend
(eigene Darstellung).

Parameter bestimmt den Standardwert (0,5 Meter) und die Min- und Max-Felder
definieren den Wertebereich, welchen der User im Modifier definieren kann.

Abbildung 24 stellt die konfigurierten Group
Sockets als kontrollierbare Parameter im
&) v FunkyTrees Geometry Nodes Modifier an und ist somit
v BaseControls das Frontend der in Abbildung 23 gezeigten
Konfiguration.

v ¢g GeometryNodes

TrunkRadius

VerticalSegments Es existieren unterschiedliche
Herangehensweisen zur Parametrisierung.
Wahrend einige Geometry Nodes Entwickler
beinahe jeden Parameter exponieren,
reduzieren andere die Bedienung bewusst auf
weniger Kernparameter.

TopLeafScale

LeafCount

> Manage

Abbildung 24: Geometry Nodes Modifier des
,FunkyTree'-Systems (eigene Darstellung).

Da sich das LPTK explizit an Anwender ohne tiefgehende Kenntnisse zur
prozeduralen Modellierung richtet, wurde stets eine Balance zwischen Kontrolle
und Verstandlichkeit bei der Architektur der Systeme angestrebt.

Die ausgewahlten Parameter sind zu diesem Zweck mit praxistauglich Werten
vorbelegt und auf sinnvolle Wertebereiche begrenzt. Eine strukturierte
Gruppierung innerhalb der Parameter-Panels, hilfreiche Beschreibungen und
Tooltips erleichtern die Nutzung.

Die Parametrisierung stellt somit einen wesentlichen Faktor fir die Nutzbarkeit
und Erweiterbarkeit der gesamten prozeduralen Asset-Bibliothek dar.

Wahrend der Entwicklung samtlicher LPTK-Assets wurde daher konsequent
versucht, eine ausgewogene Balance zwischen kreativer Kontrolle und
Bedienbarkeit zu erreichen.

Nachdem anhand des ,FunkyTree'-Systems die grundlegenden Prinzipien zur
Strukturierung, Modularisierung und Parametrisierung prozeduraler Node Setups
vorgestellt wurden, folgt nun die schrittweise Erweiterung dieser Ansatze auf
komplexere Anwendungskontexte.

Als nachstes wird ein kurvenbasiertes Verfahren zur Pfadgenerierung anhand des
,StonePath'-Assets erlautert. Analog zum ,FunkyTree', werden auch hier Objekte

anhand einer Nutzerdefinierten Kurve instanziiert, jedoch wurde das System um

einige anwendungsspezifische Funktionalitaten erweitert.

28

V Curve to Plane S

Geometry '

V Group Input &)~ Distribut..) Abbildung 25: 'Curve to Plane'-Gruppe

Geometry Geometry

4.1.3 Kurvenbasierte Pfadgenerieung

Fur Assets wie Pfade bietet sich eine dynamische Generierung besonders gut an.
Zwar existieren statische Baukastensysteme, welche die individuelle
Zusammensetzung einzelner, vordefinierter Pfadelemente erlauben, ein
prozeduraler Ansatz, der sich automatisch an unterschiedliche Untergriinde oder
Terrains anpasst und einem nutzerdefinierten Pfad folgt, stellt jedoch die deutlich
elegantere und unkompliziertere L6sung dar.

In diesem Kapitel wird die prozedurale Pfadgenerierung anhand des ,StonePath'-
Systems erlautert, welches mithilfe von nutzerdefinierten Kurven dynamische
Pfade erzeugen kann, die sich jedem Untergrund anpassen.

Das System ist vergleichsweise simpel, erlaubt es aber, Kurven auf Oberflachen
zu zeichnen, entlang derer in einer definierbaren Breite Steine platziert werden,
sodass ein naturlicher Pfad entsteht.

Zur Erstellung der Kurven wird, wie bereits beim ,FunkyTree'-System, das
integrierte Freehand Spline-Werkzeug von Blender verwendet. Dieses ermdglicht
es, Kurven freihand zu zeichnen und direkt auf bestehende Objekte zu
projizieren.

Nach dem Zeichnen der Basiskurve kann der Nutzer den Pfad mithilfe
verschiedener exponierter Parameter non-destruktiv anpassen.

4.1.3.1 ,Curve to Plane'

Um Steine entlang eines Pfades zu platzieren, bietet sich die
Instanziierung von Objekten auf einer Flache an.

Im Gegensatz zum ,FunkyTree'-System, bei dem Aste direkt
entlang der vom Nutzer gezeichneten Kurve instanziiert
werden, benétigt der ,StonePath' eine Flache mit
definierbarer Breite, auf der die Steine verteilt

werden kénnen.

Daflir wird die gezeichnete Kurve im ersten Schritt in
eine Plane umgewandelt, die als Basis fur die
Instanzen dient.

Dieser Prozess erfolgt in der Node-Gruppe ,Curve to Plane'.

Zunachst wird die Kurve entlang ihrer Normalen um die Halfte des
nutzerdefinierten Width-Parameters verschoben, welcher die Breite des
spateren Pfades bestimmt.

AnschlieBend wird sie mithilfe der Curve to Mesh und Extrude Mesh
Nodes in ein Mesh konvertiert und extrudiert, um eine ebene Flache zu
erzeugen. Durch die Verschiebung um die halbe Breite verlauft die
Mittellinie dieser Flache exakt entlang der urspriinglichen Kurve.
So entsteht eine flexible, parameterbasierte Grundlage, auf der
die Steine spater gleichmaBig verteilt werden kdénnen.

Abbildung 26: Darstellung des ,StonePath'-Systems
auf einem ,MeshTerrain' (eigene Darstellung).

Vv Group Input

Default Stones 0===180,

Vv Shrinkwrap Plane g

Geometry @,

® Geometry

&) v Shrinkwrap...)
® Geometry Abbildung 27: Bimodale Schaltungslogik

4.1.3.2 Instanziierung und Projektion mit ,Stones on Surface'

Nachdem die Kurve in eine Plane Uberfiihrt wurde, wandert diese optional durch
die ,Shrinkwrap Plane'-Gruppe und anschlieBend in die ,Distribute Stones on
Surface'-Gruppe. Diese bimodale Logik wurde implementiert, um sowohl
nutzerdefinierte Assets verwenden zu kdnnen, als auch eine vollprozedurale
Alternative zu bieten.

Modus 1: Interne Prozedurale Generierung (maximale Konformitat)

Flr Projekte, welche keine eigenen Steinkollektionen bendtigen (reprasentiert
durch den False-Pfad der Switch Node), wird die Stein-Geometrie prozedural
erzeugt, wodurch eine optimale Projektion erfolgen kann:

1. Punktverteilung: Die Plane wird mittels der Distribute Points on Faces Node
in eine Punktwolke Uberflihrt. Diese Punkte kédnnen dabei anhand
exponierter Parameter vom Nutzer in der Dichte konfiguriert werden und
stellen die Punkte zur Instanziierung der einzelnen Steine dar.

2. Instanz-Geometrie: Anstelle eines externen Assets wird ein einfaches 3x3-
Grid (eine Plane mit neun Vertices) auf die Punkte instanziiert.

3. Projektionslogik: Die Vertices dieses einfachen Grids dienen als individuelle
Projektionspunkte. Mithilfe der Geometry Proximity Node werden die
nachstgelegenen Positionsdaten des Zielobjekts flr jeden Vertex aller
Grids ermittelt. Durch die nachfolgende Set Position Node werden die
Vertices der Grids auf diese ermittelten Positionen verschoben.

Dieser Mechanismus projiziert die Geometrie jeder einzelnen Instanz auf die
Oberflache, wodurch sich die Steine dynamisch der Krimmung, Neigung und
Hbéhe des Objekts, bspw. eines Terrains, anpassen und somit eine héchstmdégliche
Terrain-Konformitat gewahrleisten.

Modus 2: Externe Asset-Kollektion (Klnstlerische Kontrolle)

Will der Nutzer eine externe Stein-Kollektion als Instanzobjekt verwenden
(reprasentiert durch den True-Pfad der Switch Node), wird die Plane an sich
zunachst als Ganzes auf das Ziel-Terrain projiziert (gewrappt).

1. Technischer Mechanismus: Dies geschieht durch die ,Shrinkwrap Plane'-
Gruppe, welche jeden Vertex des Pfades, mithilfe der Geometry Proximity
Node auf das nachstliegende Face der Projizierungs-Geometrie projiziert.

2. Resultat: AnschlieBend wandert die per Shrinkwrap-Projektion angepasste
Plane ebenfalls in die Distribute Points on Faces Node, wobei in diesem Fall
die erzeugte Punktwolke und die daraus resultierende Instanziierung (in

30

Geometry

&) v Distribute...n Surface)

% I \ Distribute Stones on Surface)
- —C e T
)

der folgenden Gruppe) grob der Terrain-Oberflache folgen. Da die
Instanzen selbst jedoch ihre urspriingliche Geometrie beibehalten, limitiert
dieser Modus die Detailgenauigkeit der Terrain-Konformitat zugunsten der
Verwendung komplexer, manuell erstellter Assets*.

4.1.3.3 ,Material Manager*

Die korrekt platzierten Geometrien werden anschlieBend in die ,Material
Manager'-Gruppe Ubergeben.

Hier erfolgt die Materialzuweisung der einzelnen Steine. Die Logik verwendet eine
Random Value Node, um einen zufalligen Wert fir jede Instanz zu generieren.
Dieser Index-Wert wird anschlieBend genutzt, um Uber die Set Material Index
Node jeder Instanz eines von drei verschiedenen Materialien zuzuweisen. Die
Farbe der einzelnen Materialien kann hierbei Uber exponierte Parameter im
Modifier frei konfiguriert werden.

4.1.3.4 ,Default Stone Extrusion and Deformation®

Dieser abschlieBende Verarbeitungsschritt wird nur auf die intern prozedural
erzeugten Steine (Modus 1/False-Pfad) angewandt und dient der Erzeugung von
geometrischer Tiefe und der Brechung der Uniformitat.

Extrusion und Skalierung: Die auf das Terrain projizierten, aber noch flachen
Stein-Planes werden mittels der Extrude Mesh Node extrudiert, um ihnen eine
Hbhe zu verleihen. Die neue, obere Flache wird anschlieBend skaliert, um die
Kanten optisch zu brechen und die Erscheinung eines abgerundeten Steins zu
erzeugen. Die beiden Parameter kénnen hierbei ebenfalls im Modifier frei
konfiguriert werden.

Zufallige Verformung: Die final extrudierte Geometrie wird einer prozeduralen
Deformation unterzogen. Hierflr wird eine Noise Texture Node mit einer Set
Position Node kombiniert. Die Starke der Verformung wird dabei von einer
Random Value Node bestimmt, welche durch definierbare Min- und Max-Werte
einer Map Range Node gesteuert werden kann.

Abbildung 28: Darstellung der Pfadgenerierung in drei Schritten

1. Visualisierung eines Nutzergezeichneten Basispfads (links)

2. Aus Pfad generierte Plane und aus Plane generierte Punktwolke (mittig)
3. Finales Terrain Pfad nach Instanziierung, Projektion, Einfdrbung, Extrusion und Verformung der
Grids (rechts)

49 Hierbei ist zu erwahnen, dass das System noch einen zusatzlichen Modus anbietet, welcher die Geometrie der
eingespeisten Objekte analysiert, die Vertices der nach unten gerichteten Faces selektiert und diese auf das
Terrain shrinkwrappt. Bei einfachen Assets kann dieser Ansatz funktionieren, bei komplexeren Stein-Assets
kann dies jedoch zur starken Verzerrung der Steingeometrie fiihren.

31

Abbildung 29: Vereinfachte vertikale
Darstellung des ,ProceduralTerrain’-Setups
(eigene Darstellung).

4.1.4 ,ProceduralTerrain'

“ Procedural Terrain

Das ,ProceduralTerrain'-System ist das komplexeste System
des gesamten Projekts und wurde von Beginn bis zum Geometry
Abschluss des Praxisprojekts kontinuierlich erweitert und

verfeinert.
(Voll-)prozedurale Terrain- und Level-Systeme sind, wie in v BaseMesh & Booleans
2.5 beschrieben, eine der haufigsten Formen von PCG- e

Integration in der Spieleentwicklung. Fir einen Design-
Time-bezogenen, Mixed-Authorship (in 2.5.3 behandelt)
Workflow aber weniger geeignet. In diesem Kontext sind
Kontrollier- und Erweiterbarkeit weitaus wichtiger als die
Méglichkeit zur unendlichen Generierung. Wl UL TRl
Geometry

gj v BaseMesh&.. ()

Geometry

Das ,ProceduralTerrain' unterscheidet sich deshalb

fundamental von den vollprozeduralen Implementationen
eines Terrain-Systems. Es liefert eine prozedurale EEE
Basisgeometrie, die als Ausgangspunkt oder Inspiration
dient, aber vollstandig verander- und konfigurierbar ist. Vv Material Manager

=)v Merge &Tri..)

Geometry

Das System ist ein umfangreicher Node Tree mit Gber 50
. . . = q -

konfigurierbaren Parametern. Auf diese @) Material Ma.. [

Parameter und die grundlegende f— Geometry

Architektur des Systems werde W ,

. . . ’ . v Water Generation

ich in diesem Kapitel eingehen. “ Polish

Die Logik des Systems ist GeomeTW EhE
groBtenteils in Reihe geschaltet &)y Water Ge.. Jig ~ . =
und iteriert die Geometrie Schritt Geometry el Polin =
fiir Schritt. ey

v Scatter UVs
Geometry
=) v Scatter UVs ()

Geometry

Vv Join Geometry

Geometry

Vv Scattering
Geometry
=) v Scattering)

Geometry

Vv Procedural Terrain

Geometry

Abbildung 30: Beispiel Rendering eines ,ProceduralTerrain' (eigene
Darstellung).

4.1.4.1 Basis-Mesh & Booleans

Die erste Node-Gruppe erzeugt das Basis-Mesh des Terrains. Ausgangspunkt ist
eine einfache Plane, auf die der Geometry Nodes Modifier angewendet wird.
Diese wird zunachst unterteilt (subdivided) und anschlieBend mithilfe mehrerer
kombinierter Noise Texture Nodes verformt. Uber eine Set Position Node werden
die Z-Koordinaten der einzelnen Vertices anhand der noise-basierten Werte
angepasst, wodurch eine prozedural generierte Terrainoberflache entsteht.

Abbildung 31: ,ProceduralTerrain' Basis-Mesh mit visualisierten Vertices und deren Z-Positionen
(eigene Darstellung).

Fir die Verformung stehen drei unterschiedlich konfigurierte Noise-Maps zur
Verfligung, welche Uber die Presets ,Default’, ,Hills' und ,Plateau’ abgerufen
werden kénnen.

Das Terrain durchlauft anschlieBend zwei Mesh Boolean Nodes: zunachst einen
Union Boolean, danach einen Difference Boolean. Beide verwenden
nutzerdefinierte Collections als Input, wodurch zusatzliche Geometrien manuell
auf das Terrain addiert oder daraus subtrahiert werden kénnen.

4.1.4.2 ,Merge & Triangulation'

AnschlieBend wird die Geometrie in die ,Merge & Triangulation'-Gruppe geflhrt.
Hier werden Vertices, welche einen definierten Distanzschwellwert
unterschreiten, zusammengefiuhrt (merged). Dieser Schritt ist essenziell, um die
durch Noise erzeugte mit der vom Nutzer eingefligten Geometrie zu
verschmelzen und unnatiirliche Ubergénge zu vermeiden.

Vv BaseMesh & Booleans Vv Merge & Triangulation

Geometry Geometry

™ Procedural Terrain o)v BaseMesh&..) o)y Merge & Tri..)

Geometry Geometry Geometry

33
Abbildung 32: 'BaseMesh & Booleans'- und 'Merge & Triangulation'-Gruppe

4.1.4.3 ,Material Manager*

Nachdem durch die ersten beiden Node-Gruppen das grundlegende Mesh erzeugt
wurde, wird die Geometrie aufgetrennt und parallel an zwei weitere Gruppen
Ubergeben.

Der ,Material Manager' GUbernimmt dabei die Aufgabe, einzelnen Flachen (Faces)
automatisch verschiedene Materialien zuzuweisen. Die Selektion erfolgt zunachst
parametrisch mithilfe mehrerer miteinander verknlpfter Systeme, kann jedoch
bei Bedarf auch manuell angepasst werden.

StandardmaBig umfasst das System vier Materialien: ,Stone', ,Dirt', ,Grass' und
,JopGrass'. Die jeweiligen Basisfarben dieser Materialien kdnnen direkt im
Modifier-Panel angepasst werden, wodurch der Nutzer sofortiges visuelles
Feedback erhalt.

Im ersten Schritt der parametrischen Selektion wird flr jede Flache das
Skalarprodukt zwischen ihrer Normalrichtung und der globalen Z-Achse
berechnet. Dadurch erhalt jedes Face einen numerischen Wert im Bereich von —1
(vollstandig nach unten gerichtet) bis 1 (vollstandig nach oben gerichtet), der
beschreibt, wie stark seine Ausrichtung mit der globalen Z-Richtung
Ubereinstimmt. Nutzer kénnen dadurch mithilfe der Compare Node
Neigungswinkel-Schwellwerte konfigurieren, um den verschiedenen Faces
entsprechende Materialien zu zuzuweisen.

So lasst sich das Verhaltnis zwischen ,Stone', ,Dirt', ,Grass' und ,TopGrass'
feinjustieren und an verschiedene Gelandetypen anpassen. Darlber hinaus bietet
das System mehrere optionale Zusatzfunktionen:

e Ein héhenbasierter ,Stone Threshold', der die Materialverteilung an die
relative Hohe des Meshes koppelt und so die gezielte Definition bergiger
Regionen in entsprechenden Hdhen praziser abbildet.

e Eine ,Overhang Detection', die mithilfe von Raycasts entlang der positiven
Z-Achse erkennt, ob eine Flache Uberdeckt ist und die Zuweisung eines
Overhang-Materials erzwingt.

Diese Kombination aus geometrischer Analyse und benutzerdefinierbaren
Parametern ermdglicht eine prazise, visuell stimmige und zugleich prozedurale
Materialverteilung.

v Material Manager v Polish

Geometry =@ Geometry |

=) v Material Ma...) X &) v Polish @)

@==1 Geometry O=—=|l Geometry

Abbildung 33: 'Material Manager'- und 'Polish'-Gruppe

» Water Generation Abbildung 34: 'Water Generation'-Gruppe

Geometry :

o)~ Water Ge.. UJ

Geometry

4.1.4.4 Water Generation'

Parallel zur Geometrie im ,Material Manager' wird die Basisgeometrie auch in das
,Water Generation'-System Ubergeben. Die einfachste Mdéglichkeit, Wasser in ein
Terrain zu integrieren, besteht darin, eine Plane mit einem Wassermaterial ber
die gesamte Flache des Terrains zu legen.

Dieser Ansatz ist jedoch sehr limitiert. Er erlaubt lediglich einen globalen
Wasserspiegel und verhindert die gezielte Deaktivierung einzelner
Wasserbereiche, wodurch es unmdglich ist, eine Schlucht oder Héhle unterhalb
des globalen Wasserspiegels korrekt darzustellen.

Um diese Einschrankung zu umgehen, wurde ein gruppenbasierter Ansatz
entwickelt, welcher eine flexiblere Steuerung und die gezielte Entfernung der
einzelnen Wasseroberflachen anhand ihrer Gruppen ermdéglicht.

Bei der Umsetzung traten mehrere Komplikationen auf, wodurch das System
komplex und rechenintensiv wurde. Eine der zentralen Herausforderungen
bestand darin, die relevante Geometrie zu selektieren, um die Punkte einzelner
Gewasser prazise zu gruppieren und anschlieBend als zusammenhangende
Meshes zu verbinden.

Zur Generierung der Wasseroberflachen werden zunachst die auBeren Kanten der
Basisgeometrie selektiert und entlang der Z-Achse nach oben verschoben, um
eine geschlossene Hille um die Geometrie zu erzeugen. AnschlieBend wird diese
Geometrie samt der Hulle mit einer Distribute Points on Faces Node in eine
Punktwolke umgewandelt. Alle Punkte, welche nicht auf
Hohe (Z-Position) des nutzerdefinierten Wasserspiegels
plus dem definierbaren Schwellwert des WaterLevel-
Parameters liegen, werden geléscht.

Im nachsten Schritt werden die Ubrigen Punkte
auf eine einheitliche Z-Position verschoben,
wodurch eine saubere, horizontale
Verteilung auf Wasserspiegelhéhe
entsteht (dargestellt als rote Punkte
in Abbildung 35).

Aus dieser bereinigten
Punktwolke wird mit der Points
to Volume Node ein Volumen
erzeugt (blaue Volumen in
Abbildung 35). Dieser Schritt
ist essenziell, durch ihn ist es
maoglich, nebeneinanderliegende Punkte zu
einem geschlossenen Volumen zusammenzufassen.
Das resultierende Volumen wird anschlieBend in ein Mesh

konvertiert.
Abbildung 35: ,ProceduralTerrain' mit visualisierten Punktwolken (rot)
und hervorgehobenen Wasser-Volumen (blau) (eigene Darstel/ug%).

Diese separaten Meshes lassen sich mithilfe der Mesh Island Node gruppieren.
Uber den Radiusparameter der Point to Volume Node l&sst sich steuern, welche
Punkte als zusammenhangend interpretiert werden.

Ist der Radius jedoch zu groB3, beziehungsweise der Abstand zweier eigentlich
getrennter Gewasser kleiner als der Abstand zu dem nachsten Punkt eines
anderen Gewassers, kann es vorkommen, dass optisch getrennte Wasserflachen
falschlicherweise zu einer gemeinsamen Gruppe verschmolzen werden.

Nach der Gruppierung werden die einzelnen Mesh Islands in eine Repeat Zone
gefuhrt, welche in ihrer Funktionsweise einer for-loop ahnelt.

Innerhalb dieser Zone kénnen die einzelnen Gruppen separat weiterverarbeitet
werden.

Die Meshes werden erneut mithilfe der Mesh to Points Node in Punktwolken
umgewandelt, auf eine identische Z-Position gebracht, abstands-basiert
zusammengeftuhrt (merged) und schlieBlich mit einer Convex Hull Node zu
flachen, geschlossenen Wasserflachen zusammengefuhrt.

Was auf den ersten Blick trivial wirkt, eine distanz-basierte Gruppierung von
Vertices, war in der Praxis erstaunlich herausfordernd.

Ab einem gewissen Grad an Komplexitat existieren kaum noch Tutorials oder
dokumentierte Workflows zu Geometry-Nodes.

Es gibt nur wenige wirklich erfahrene Anwender, und noch weniger von ihnen
erstellen didaktisch aufbereitete Inhalte.

Nach ausgiebigen Versuchen mit der Geometry Proximity Node, um eine stabile
Lésung flr die Distanz-basierten Gruppierungen zu finden, konnten keinen
konsistenten Ergebnis erzielt werden.

Der hier gewdahlte Volumen-basierte Ansatz in Kombination mit der Mesh Island
Node war zwar nicht der direkteste, fir mich persénlich jedoch der einfachste
und verlasslichste Weg, das gewlinschte Verhalten umzusetzen.

Der Ansatz hat letztlich gut funktioniert, auch wenn er in der Umsetzung deutlich
komplexer und rechenintensiver war, als ich urspringlich geplant hatte.

Rlckblickend war das System zwar funktional und technisch interessant, aber flr
den eigentlichen Zweck der Operation Uberentwickelt.

Im weiteren Projektverlauf entstand eine wesentlich einfachere und elegantere,
Boolean-basierte Lésung:

Dabei wird eine leicht herunterskalierte Plane auf die Hohe des definierten
Wasserspiegels gesetzt und das Terrain anschlieBend Uber einen Difference
Boolean davon abgezogen.

Das Ergebnis sind dieselben Wasserflachen, welche sich ebenfalls durch
verschiedene Mesh Island Indices ansprechen lassen, jedoch mit einem Bruchteil
der Komplexitat. Das urspriingliche System besteht aus 46 Nodes und eine
Ausflihrungszeit von ~24ms, das neue besteht aus 8 Nodes und hat bei
derselben Ausgangsgeometrie eine Ausflihrungszeit von ~6ms. Damit bleibt der
erste Ansatz ein interessantes Experiment, zeigt aber, wie schnell sich
prozedurale Systeme in ihrer eigenen Komplexitat verlieren kénnen. Das Beispiel
unterstreicht die Bedeutung funktionaler Effizenz gegenuber technischer Finesse,
wie wichtig es ist, architektonische Entscheidungen kontinuierlich zu hinterfragen
und Vereinfachungen bewusst anzustreben.

36

4.1.4.5 ,Polish’

Nach der Materialzuweisung wird die Geometrie an die ,Polish*-Gruppe
Ubergeben. Diese fasst mehrere optionale Funktionen zusammen, die das Terrain
visuell verfeinern und zusatzliche Konfigurationsmdglichkeiten bereitstellen.

,Extrude Grass':
Erlaubt die Extrusion von Flachen mit ,Grass'- und ,TopGrass'-Material ab einer
definierbaren Mindesthéhe, um gezielt geometrische Tiefe zu erzeugen.

,Snow":

Optional aktivierbares Feature, das ein Schnee-Material auf ausgewahlte Flachen
auftragt.

Parameter wie Mindesth6he, maximaler Neigungswinkel und optionale Extrusion
des Schnees sind konfigurierbar.

Die erzeugten Schnee- und Gras-Extrusionen kdnnen anschlieBend Subdivided
werden, um sie organisch in die bestehende Geometrie zu integrieren.

,Scattering':

Ermdglicht die Platzierung von Objektkollektionen auf unterschiedlichen
Materialien direkt im ,ProceduralTerrain'-System.

Nutzer kdnnen Kollektion, Dichte, Skalierung und einen zufalligen
Skalierungsparameter individuell anpassen.

Nach Abschluss dieser Verarbeitungsschritte werden die Terrain-Geometrie und
die parallel erzeugte Wasser-Geometrie Uber eine Join Geometry Node
kombiniert.

Zum Abschluss wird automatisch eine UV-Map generiert, welche flr die
folgenden Systeme, insbesondere das ,ScatterMeshes'-System und die
,ScatterCurves', benétigt wird.

Abbildung 36: ,ProceduralTerrain' in drei Schritten

1. Noise-basiertes Terrain (links)

2. Terrain nach Materialzuweisung und visualisierte Booleans (mittig)
3. Finales Terrain nach Wassergeneration und durchlaufen der ,Polish'-Gruppe (rechts)
(eigene Darstellung).

37

4.1.5 Erweiterung zum ,MeshTerrain'

Das anfanglich Entwickelte und umfangreich beschriebene ,ProceduralTerrain'-
System stellt die urspriingliche Terrain-Implementierung des LPTK dar. Durch das
Prinzip der noise-basierten Basisgeometrie-Generierung in Kombination mit den
nutzerdefinierten Boolean Operationen bietet es groBe Freiheit bei der
Gestaltung.

Wahrend einer Testphase zeigte sich jedoch, dass die Noise-basierte
Basisgeometrie zwar interessant und flr explorative Workflows geeignet ist,
jedoch stért, wenn man ein Terrain nach einer konkreten Vorgabe realisieren und
somit volle Kontrolle behalten méchte. Dabei wurde die noise-basierte
Basisgeometrie haufig auf Hohe Null gesetzt, um eine freiere Gestaltung
ausschlieBlich mittels der Boolean Geometrien zu erzielen.

Auf Grundlage dieser Erkenntnis wurde das ,MeshTerrain'-
System entwickelt. Das ,MeshTerrain' funktioniert im Kern wie
das Procedural Terrain und durchlauft alle im vorherigen
Kapitel vorgestellten Operationsgruppen, mit dem
Unterschied, dass die Basisgeometrie nicht durch Noise
definiert wird, sondern das System direkt auf die
Geometrie des Objekts auf, welches es zugewiesen
wird, verwendet. So kann das ,MeshTerrain' im
Gegensatz zum ,ProceduralTerrain' nicht bloB als
eigenstandiges System- sondern vielmehr als eine
Art Post-Processing-Layer fir jede Art von Objekt
genutzt werden.

Durch die Entkopplung der prozeduralen Logik ergeben sich

interessante und flexible Méglichkeiten zur Erstellung

und Modifizierung von Objekten. Abbildung 37: Mesh-Terrain auf Basis zweier
einfacher Box-Geometrien (eigene Darstellung).

Die Basisgeometrie kann so durch alle erdenklichen

Methoden erzeugt und prozedural Uberarbeitet werden. Beispielsweise kdnnen
nutzerdefinierte Height Maps oder bestehende Terrain-Assets als
Basisgeometrie genutzt werden.

Ebenso kdnnen verschieden manuelle Modellierungstechniken angewandt
werden. Abbildung 37 zeigt, wie ein sehr simples Objekt (Wireframe
orange visualisiert) interessante Geometrien erzeugen kann.

Besonders interessant ist dabei der Ansatz eine sculpting-
basierte Basisgeometrie (Abbildung 38) mit dem
System zu kombinieren. So kann der Nutzer ahnlich
wie bei den kurven basierten Systemen malend die
Geometrie des Terrains beeinflussen.

Die Kombination verschiedener Modellierungsansatze
ist mit prozeduralen Workflows besonders
interessant. Ein UV-basierter Ansatz zum
Scattering wird im folgenden Kapitel besprochen.

38

Abbildung 38: ,MeshTerrain' auf durch sculpting
definierter Basisgeometrie (eigene Darstellung).

4.1.6 Scattering-Systeme

Scattering-Systeme gehdéren zu den am haufigsten eingesetzten prozeduralen
Workflows zur effizienten Verteilung groBer Mengen wiederholter Elemente wie
Vegetation, Steinen, Pilzen oder kleineren Requisiten. Dabei werden
Objektinstanzen automatisiert oder semiautomatisiert im Raum platziert und
Uber Parameter wie Skalierung, Rotation oder Dichte regel- und/oder
zufallsbasiert variiert.

Flr das LPTK eignet sich ein malbasierter, interaktiver Workflow besonders gut.
Ein solcher Ansatz kombiniert eine hohe gestalterische Freiheit (,User Authority')
mit einer direkten, non-destruktiven und intuitiven Bedienung, sodass der
Arbeitsprozess dem traditionellen Level-Painting ahnelt.

4.1.6.1 Herausforderungen eines Weight-Paint-basierten Ansatzes

Ein gangiger Ansatz zur Instanzverteilung mithilfe von Geometry Nodes nutzt
eine Kombination aus Distribute Points on Faces und Instance on Points Nodes,
wobei die Punktdichte Giber ein Weight-Attribut gesteuert wird.

Wahrend der Umsetzung eines solchen Workflows zeigten sich im prozeduralen
Low-Poly-Kontext jedoch zwei wesentliche Einschrankungen:

1. Weight-Painting: funktioniert nicht auf unrealisierter Geometrie
Geometry Nodes erzeugen ,virtuelle®, d. h. nicht realisierte Geometrie. Auf
dieser kann kein Weight-Painting erfolgen, ohne dass der Modifier destruktiv
angewendet wird, was dem non-destruktiven Grundprinzip des LPTK
widerspricht.

2. Weight-Painting: ist an Vertex-Dichte gekoppelt
Die Auflésung des Weight-Paintings hangt direkt von der Anzahl der
verfligbaren Vertices ab. Da Low-Poly-Assets bewusst mit geringer
Polygonanzahl modelliert werden, ist eine prazise
raumliche Maskierung kaum maoglich (siehe
Abbildung 39). Dies flhrt entweder zu grober
Verteilung oder zwingt zu unndtig hoher
Topologie, was wiederum dem Low-Poly-
Design widerspricht.

4.1.6.2 UV-basiertes Curve-Scattering (LPTK-Ansatz)

Zur Lésung dieser Limitierungen wurde im LPTK ein UV-
basiertes Curve-Scattering-System entwickelt. Es nutzt

Abbildung 39: Visualisierung von
)) 3 i Weightpainting auf niedrig aufgeldster
die Curve Sculpting-Werkzeuge von Blender (urspriinglich piane. Die Roten Regionen zeigen

fir Hair-Workflows konzipiert) und kombiniert diese mit Vertices mit Weight 1.0, die blauen mit

weight 0.0. Aufgrund der niedrigen
Auflésung wirkt sich der Weight-Paint auf
die umliegenden Faces aus (eigene
Darstellung).

kurvenbasierter Instanziierung in Geometry Nodes.

Dabei kédnnen Kurven direkt auf einem Objekt platziert
werden, deren Geometrie innerhalb der Geometry Nodes
genutzt werden kann, um kurvenbasierte prozedurale
Assets wie Baume, aber auch Standardobjekte zu
instanziieren.

39

Hauptvorteile des UV-basierten Curve-Scattering-Verfahrens:

1. Topologie unabhangige Prazision
Die Maskierung der Scatter-Bereiche erfolgt im UV-Raum, statt tGber Vertex-
Daten. Dadurch bleibt die Prazision vollstandig erhalten auch bei Low-Poly-
Modellen,

2. Kurven statt Punkte = volle Kontrolle fiir Kurven-basierte Assets
Jede Instanz basiert auf einer editierbaren Kurve, die nachtraglich mithilfe der
Curve Sculpting Brushes transformiert, verlangert, gekrimmt oder geléscht
werden kann. Kurven-basierte Asset-Systeme wie der in 4.1.1 beschriebene
,FunkyTree' erhalten somit direkt editierbare Kurven als Geometrie-Input,
wahrend statische Assets lediglich den Startpunkt der Kurve zur
Instanziierung nutzen.

Einschrankungen und Anforderungen dieses Verfahrens:

1. UV-Maps sind erforderlich
Das jeweilige Objekt muss UV-unwrapped sein, was einen zusatzlichen Setup-
Schritt zur Automatisierung erfordert. Sobald Mesh-Geometrie hinzugefligt
oder entfernt wird, muss diese neu unwrapped werden. Je nach Topologie
kann dies Auswirkungen auf die Performance des Systems haben.

2. UV-Anderungen wirken sich auf Positionierung der Instanzen aus
Werden Flachen hinzugefligt, entfernt oder verschoben werden UV-Maps neu
unwrapped, wodurch es zur Positionsanderungen der Instanzen kommen
kann. In der Praxis bleibt dies jedoch im Normalfall unkritisch, solange die
Ausgangsgeometrie nicht grundlegend verandert wird.

Im LPTK sind zwei Scattering-Systeme implementiert.
ScatterMeshes

1. Fugt dem Zielobjekt ein ,Empty-Hair-Object™ hinzu

2. User kann eigene Mesh-Objekte oder Collections
als Instanzquellen wahlen

3. Platzierung erfolgt Gber Curve Sculpting
Brushes

4. Parameter wie Skalierung und Rotation kénnen
im Modifier angepasst werden

ScatterCurves

1. Funktioniert analog zu
ScatterMeshes

2. Instanziert jedoch Kurven basierte
Assets (z. B. Baumsysteme ,Birch',
,Pinel' oder ,FunkyTree")

3. Editierbare Kurven dienen direkt als
Geometrier Input flr prozedurale
Generierung (nicht reduziert auf
Startpunkt)

4. Erweiterbar um weitere Asset-Systeme

Abbildung 40: Darstellung eines ,ScatterCuves'-Systems auf welchem
drei "Haare" (Kurven) platziert wurden, welche mithilfe der Hair
Sculpting Brushes angepasst werden kénnen (eigene Darstellung).

4.2 Entwicklung des Add-ons in Python

Wie bereits in 2.4.1 beschrieben, bestehen Blender-Add-ons aus einem oder
mehreren Python-Skripten, welche in einem ZIP-File zusammengefasst werden
kdénnen. In diesem Abschnitt wird die Entwicklung des LPTK-Add-ons
beschrieben. Wahrend die Geometry Node Setups (Kapitel 4.1) den prozeduralen
Kern des Systems bilden, vereint das Add-on diese in einer einheitlichen,
zuganglichen Benutzeroberflache und stellt die funktionale Verbindung zwischen
Nutzerinteraktion und den zugrundeliegenden Node Setups her.

Das Ziel der Add-on-Entwicklung war es, eine klare, leicht verstandliche und
erweiterbare Struktur zu schaffen, sowohl im Frontend (Nutzeroberflache) als
auch im Backend (Code- und Datenstruktur). Dabei standen Verstandlichkeit,
Anpassbarkeit und Stabilitat GUber der formalen Perfektion des Codes.

Das System soll es erméglichen, dass spatere Erweiterungen, etwa durch neue
Node Setups, oder zusatzliche Funktionen, mit minimalem Aufwand, umgesetzt
werden kénnen.

Die Entwicklung des Add-ons umfasst:

e Die Entwicklung der grundlegenden Struktur zum Einlesen bestehender
Geometry Node Systeme und einfligen dieser in neue Szenen

e Die Entwicklung der Benutzeroberflache

e Die Implementierung des Game-Engine Syncs

e Die Entwicklung des semi-automatischen Thumbnail-Renderes

Ein GroBteil der Implementierung wurde manuell konzipiert, mithilfe KI-
gestltzter Prototypen entwickelt und anschlieBend auf das eigene Verstandnis
hin angepasst. Auf diese Weise konnten frih funktionierende Ergebnisse erzielt
werden, die folgend so Uberarbeitet wurden, dass zu jedem Entwicklungsstand
ein vollstandiges Verstandnis der Codebasis bestand. Dadurch wurde verhindert,
dass unubersichtlicher oder schwer wartbarer Code entsteht.

Anstelle objektorientierter Muster wurde, wenn maoglich, bewusst ein linearer,
klar lesbarer Aufbau gewahlt bspw. If/else-Strukturen statt komplexer Klassen.
Dieser Ansatz erleichtert das Verstandnis des Ablaufs und vereinfacht zukUlnftige
Anpassungen und Erganzungen ohne lange Einarbeitungszeit.

Zunachst wird das Einlesen der einzelnen Node Trees mit einem Skript behandelt.

41

4.2.1 Einlesen der Node Trees

Um die erstellten Geometry Node Setups im Add-on verfligbar zu machen,
werden diese in einer festen Struktur organisiert. Jedes Setup wird in einer
separaten .blend-Datei gespeichert. Dabei tragt sowohl die Datei als auch der
darin enthaltene Node Tree denselben Namen. Alle entsprechenden Dateien
befinden sich im Unterordner ,/my_geonodes', der im Root-Verzeichnis des Add-
ons abgelegt ist.

Zusatzlich enthalt das Root-Verzeichnis die Datei ,geo_nodes.json', welche
samtliche Setups beschreibt. Flir jeden Node-Tree werden dort die folgenden
Attribute hinterlegt:

Beispielhafte geo_nodes.json Struktur flir das ,MeshTerrain'-Asset im LTPK:

. "MeshTerrain": {
"filename": "MeshTerrain.blend",
"node_type": "CUBE",
"category": "Terrain",
"thumbnail": "MeshTerrain.jpg"

. ¥

Das Add-on liest diese Datei beim Start ein und Uberfiuhrt die Informationen in
ein Dictionary. Auf diese Weise lassen sich die Pfade zu den Node Trees sowie die
zugehorigen Metadaten flexibel abrufen.

Das folgende Code-Snippet zeigt den Aufbau der Datenstruktur aus der .json-Datei:

geo_nodes[name] = {
"filepath": os.path.join(geonodes_folder, data["filename"]),
"node_type": data["node_type"],

"thumbnail": data["thumbnail"]
if os.path.isabs(data["thumbnail"])
else os.path.join(thumbnails_folder, data["thumbnail"])

1o
2
BE
4. "category": data["category"],
5
6
7
8

Durch diese Vorgehensweise ist es mdglich, neue Node Trees einfach durch
Hinzufligen einer .blend-Datei im entsprechenden Verzeichnis, sowie eines
Eintrags in ,geo_nodes.json' in das Add-on zu integrieren, ohne dass
Anpassungen im Quellcode erforderlich sind.

42

4.2.2 ,Node-Types'

Wie bereits in 4.2 beschrieben war ein ausschlaggebendes Argument gegen die
built-in Asset-Library von Blender die fehlende Unterstitzung fur
Kontextabhangige Operationen nach Einfliigung eines Assets.

Im Asset-Library-Workflow kédnnen einzelne Assets Uber Drag-and-Drop direkt in
die Szene geladen werden. Dies geschieht jedoch, ohne dass der Nutzer
anschlieBend in einen spezifischen Arbeitsmodus bspw. Edit-, Shading- oder
Sculpting-Mode uberfihrt werden kann.

Um diese Funktionalitat im Add-on bereitzustellen, erhalt jeder Geometry Node
Tree einen sogenannten EinflUgungskontext. Dieser definiert, auf welcher
Geometrie und mit welcher Initialkonfiguration der Node Tree in die Szene
geladen wird. Nach der Einfligung werden kontextspezifische Instruktionsketten
ausgefluhrt, die den Nutzer automatisch in die passende Blender-Umgebung
bringen, um das jeweilige Asset unmittelbar weiterbearbeiten zu kénnen.

Um diese Unterscheidung zu definieren, wurde das ,node_type'-Konzept
entwickelt Gber welches zwischen verschiedene Einfligungskontexten der
jeweiligen Node Trees unterschieden werden kann.

Zum jetztigen Zeitpunkt wird unterschieden zwischen: ,CURVE_LOW:", ,PLANE',
,TERRAINZ2', ,CUBE', ,GATE', ,CURVE' und ,SCATTER', wobei einige Typen von
mehreren Node Trees ,genutzt" werden und andere komplette special-case
Lésungen sind.

Beispielhafte Instruktionen fir ,node_type': ,CURVE_LOW":

1. if self.node_type == "CURVE_LOW":
2. bpy.ops.curve.primitive_bezier_ curve_add(enter_editmode=True,
location=context.scene.cursor.location)

obj = bpy.context.active_object

obj.data.resolution_u = 3

bpy.ops.curve.select_all(action="SELECT")
bpy.ops.curve.delete(type="VERT")
bpy.ops.wm.tool_set_by id(name="builtin.draw")
settings = context.scene.tool_settings.curve paint_settings
o settings.depth_mode = 'SURFACE'
. settings.use_stroke_endpoints = True

Wenn das ausgewahlte Setup beispielsweise den Typ ,CURVE_LOW" besitzt, wird
zunachst eine Bézier-Kurve an der Position des 3D-Cursors erzeugt und der
Nutzer automatisch in den Edit Mode versetzt. AnschlieBend werden die
Standardpunkte der Kurve selektiert und entfernt, sodass ein leeres
Kurvenobjekt als Ausgangspunkt entsteht.

Danach versetzt das Skript den Nutzer in den ,,Draw"-Mode, in dem neue
Kurvensegmente freihdndig gezeichnet werden kénnen. AbschlieBend wird der
~Surface"-Mode aktiviert, wodurch die Kontrollpunkte der Splines direkt auf
vorhandene Oberflachen projiziert werden kénnen, bspw. anderen LPTK-Setups.
Zusatzlich wird die Option ,use_stroke_endpoints = True" gesetzt, sodass nur
der erste Kontrollpunkt der Spline auf einer bestehenden Geometrie platziert
wird.

Praktisch ist das bspw. flir die Bdume, bei welchen nur die Wurzel auf den
bestehenden Objekten platziert werden soll, der Stamm aber nicht.

43

4.2.3 ,Node-Spawning'

Nachdem die einzelnen Einsetzungs-Kontexte beispielhaft erklart wurden, gehe
ich nun auf die konkrete Einsetzungsimplementierung der Assets ein.

1. Laden der Node Trees aus den externen Dateien

Zum Importieren von Daten wie Objekten, Materialien oder Geometry Node Trees
eignet sich die ,Append"-Funktion. Diese kopiert Daten aus einer Blender-Datei
in ein anderes, ohne dabei eine Beziehung zur originalen Ausgangsdatei
herzustellen.

Sobald der Nutzer im LPTK-Panel (Kapitel 4.2.4) ein Asset auswahlt, erhalt der
Operator den Dateipfad sowie den Namen des zu ladenden Node-Trees.

Uber den Kontextmanager bpy.data.libraries.load() wird die entsprechende
.blend-Datei gedffnet und geprift, ob der gewlinschte Node Tree enthalten ist:

def execute(self, context):

self.report({'INFO'}, f"Spawning {self.node_group_name}...")

try:

with bpy.data.libraries.load(self.filepath, link=False) as (data_from, data_to):

if self.node_group_name in data_from.node_groups:
data_to.node_groups.append(self.node_group_name)

else:

self.report({'ERROR'}, f"Node group '{self.node_group_name}' not found in {self.filepath}")
return {'CANCELLED'}

Dieser Schritt importiert ausschlieBlich den bendétigten Node-Tree, unabhangig
davon, welche weiteren Daten die .blend-Datei enthalt.

VoNOOTUTE WN R

2. Ausfuhrung des jeweiligen Einfligungskontext (,Node-Type')

Nach dem Import des ausgewahlten Node Trees durchlauft das Skript die
,NodeType'-Prifung und flhrt je nach ausgewahltem Asset eine der definierten If-
Bedingungen aus. In diesen wird wie in 4.2.2 beschrieben immer ein Objekt,
bspw. eine Kurve oder ein Wirfel, in die Szene eingefligt und kontextspezifische
Operationen vorgenommen.

. if self.node_type == "CURVE_LOW": # Node-Types / Einsetzungskontext
. elif self.node_type == "PLANE":

. elif self.node_type == "SCATTER":

3. Zuweisung des Geometry Nodes Modifiers

Sobald das korrekte Ausgangsobjekt erzeugt und dem Kontext entsprechend
vorbereitet wurde, wird dem Objekt ein Geometry Nodes Modifier hinzugefigt,
welchem der importierte Node Tree zugewiesen wird.

18. obj = bpy.context.active_object # Auswahl des korrekten, im Node-Type erstellten Objekts
19. obj.name = self.node_group_name # Namenszuweisung des erstellten Objekts

20. modifier = obj.modifiers.new(name="GeometryNodes", type='NODES') # Zuweisung eines
GeometryNodes modifiers

21. if bpy.data.node_groups.get(self.node_group_name):
22. else:

23. self.report({'INFO'}, f"Successfully spawned {self.node_group name}")
24. return {'FINISHED'}

Um mit diesen Funktionalitaten zu interagieren, wurde eine Nutzeroberflache
implementiert, dessen Design und Umsetzung im folgenden Kapitel erldutert
werden.

a4

4.2.4 Nutzeroberflache

Die Oberflache des Add-ons lasst sich dank der Blender Python API nahtlos in die
bestehende Blender-UI integrieren. Entwickler haben dadurch Zugriff auf nahezu
alle Bereiche der Software und kénnen diese beliebig anpassen oder erweitern.

Blender bietet unterschiedliche Oberflachen, flr v @) LPTK
verschiedene Workflows, welche sich individuell anordnen v Assets
und konfigurieren lassen. Zentral sind hierbei die
sogenannten Editor Types>® wobei der ,3D-Viewport" den
Arbeitsbereich zur Navigation und Modellierung im
dreidimensionalen Raum bildet. Zur Integration eigener

Category: Plants

4

4

»

Add-on-Oberflachen existieren keine klaren Richtlinien. ‘\r
L}

Der letzte offizielle User Interface Design Guide wurde
2019 mit Blender 2.8 veroffentlicht>!. Dennoch haben sich
durch die stetige Entwicklung von Third Party Add-ons in S e
verschiedenen Kategorien informelle Best Practices und
Designkonventionen ergeben.

Um eine leicht zugangliche und tbersichtliche
Nutzeroberflache zu gewahrleisten, bendtigt das LPTK
Platz flr Vorschaubilder, Kndpfe und Tooltips. Fir Add-ons
mit einem Asset fokussiertem Inhalt und vergleichbarem
Funktionsumfang, welche nicht direkt auf bestehende
Blender Funktionen aufbauen, ist die Sidebar®?, auch , N-
Panel™ genannt, ein idealer Ort. Hier kénnen
verschiedenste Tools Ubersichtlich angeordnet und bei
Bedarf einzeln ein- und ausgeklappt werden.

Abbildung 41 zeigt die realisierte Oberflache des LPTK. Sie
lasst sich im 3D-Viewport Uber das N-Panel 6ffnen und ist
in drei separat ein- und ausklappbare Unterbereiche
gegliedert.

1. ,Asset -Panel': Tvy2
Hierliber kénnen die einzelnen Node Setups in die
Szene geladen werden. Dargestellt werden die + Collection Exporter
Assets in einem vertikalen Layout mit Vorschaubild
Und Zughbrigem Knopf. lIJ Collection Exporter
Uber Kategorien lassen sich unterschiedliche Asset- Export F... FBX
Gruppen ein- oder ausblenden. In Abbildung 41 ist Collections to Export:
die Kategorie ,Plants' ausgewahlt. Add Collection
2. ,Collection Exporter': Start Export
Darunter befindet sich die Oberflache des
,Collection Exporters', mit welchem die Assets » Mesh Renamer
kollektionsbasiert exportiert werden kdnnen (siehe v S
4.2.5)

Abbildung 41: Nutzeroberfliche des LPTK
(eigene Darstellung).

50 Die verschiedenen Editoren kdnnen verschiedene Daten des Projekts anzeigen. So lassen sich bspw. im

Timeline-Editor Keyframes einsehen und setzen oder Shader im Shader Editor erstellen.

51 https://developer.blender.org/docs/release_notes/2.80/python_api/ui_design/

52 https://docs.blender.org/manual/en/latest/interface/window_system/regions.html

45

3. ,Toolbox":

Im Unteren Bereich befindet sich die ,Toolbox®, welche Platz flr verschiedene
Hilfreiche Funktionen bei der Arbeit mit dem LPTK bietet. Zum jetzigen
Zeitpunkt findet sich an dieser Stelle der ,Mesh Renamer', mit welchem
automatisch Objekt- und Mesh-Namen angeglichen werden kdnnen.

4.2.4.1 Implementierung der Oberflache anhand des Asset Panels

Die Umsetzung der Benutzeroberflache erfolgt liber die Klassenstruktur der
Blender Python API und basiert hauptsachlich auf der vordefinierten Panel-
Basisklasse®3. Jedes Panel wird als eigene Klasse definiert, die von
bpy.types.Panel erbt. Ein Gbergeordnetes Panel (,LPTK") fungiert dabei als
Container, dem die drei Subpanels Uber ihre parent_id zugeordnet werden.
Blender erkennt diese automatisch und rendert sie im N-Panel.

Ein vereinfachter Auszug zeigt den grundlegenden Aufbau:

. class GEO_PT_panel(bpy.types.Panel):
bl label = "LPTK"
bl space_type = 'VIEW_3D'

bl region_type = 'UI'
bl _category = "LPTK"

Jede Panel-Klasse enthalt eine draw()-Methode, die beim Rendern der Oberflache
aufgerufen wird. Darin werden alle UI-Elemente definiert, also Knopfe, Textfelder
oder Dropdown-Menis. Im Fall des Asset Panels liest die Methode automatisch
alle verfligbaren Assets aus dem ,geo_nodes'-Dictionary (in 4.2.1 erklart) und
stellt sie im Interface dynamisch dar:

Das folgende vereinfachte Beispiel verdeutlicht das Prinzip:

1. for name, data in geo_nodes.items():

2. layout.template_icon(icon_value=thumbnail[name])
Jo layout.operator(“geo.spawn", text=name)

Die Schleife erzeugt fur jedes gespeicherte Asset ein Vorschaubild und den
zugehorigen Lade-Button. Ein Klick auf den Knopf ruft den Operator ,geo.spawn’
(wie in 4.2.3 gezeigt) auf, der das entsprechende Geometry Node Setup in die
Szene ladt.

Das ,Category'-Menl, mit dem die angezeigten Assets gefiltert werden kénnen,
wird ebenfalls automatisch aus den in ,geo_nodes' hinterlegten Metadaten
abgeleitet:

bpy.types.Scene.geo_spawner_category = bpy.props.EnumProperty(
items:get_categories,

1o

2o

BE name="Category",

4, description="Filter assets by category",

Auf diese Weise werden die erweiterbaren Aspekte der Oberflache dynamisch
erzeugt. Neue Assets erscheinen automatisch im Panel, sobald sie in der JISON-
Datei registriert werden, ohne dass zusatzlicher Code angepasst werden muss.
Neue Panels oder Operatoren lassen sich problemlos durch Ergéanzung weiterer
Klassen erzeugen, wahrend der bestehende Code unverandert bleibt.

53 https://docs.blender.org/api/current/bpy.types.Panel.html
46

4.2.5 Integration des Game-Enginge-Syncs

Damit 3D-Modelle in der Spieleentwicklung verwendet werden kdnnen, missen
diese aus der jeweiligen Modellierungsumgebung in die entsprechende Game-
Engine Ubertragen werden.

Im Blender Geometry Nodes-Workflow bedeutet dies, dass die Modifier zunachst
angewendet, das Objekt anschlieBend in ein Mesh konvertiert und in einem
gangigen Format (z. B. .fbx) exportiert werden muss.

Dabei geht der non-destruktive Workflow verloren.

Wie in Kapitel 2.5.4 beschrieben, bietet der Industriestandard Houdini mit der
eigenen Houdini Engine eine direkte Integration prozeduraler Systeme in Game
Engines wie Unity und Unreal.

Diese enge Verknipfung bietet einen unkomplizierten Workflow dar, da die
prozedural generierten Assets non-destruktiv und in Echtzeit innerhalb der Game
Engine angepasst werden kénnen. Ein erneuter Export oder Import der
Geometrie entfallt vollstandig, was die Non-Destruktivitat des Workflows erhalt
und Iterationszeiten sowie Fehleranfalligkeit deutlich reduziert.

Blender bietet keine native Integration der Geometry Nodes in gangige Game
Engines, was damit zusammenhangt, dass daflir spezielle Schnittstellen

entwickelt werden miussten, welche auf proprietaren Systemen kommerzieller
Engines aufbauen wurden, was flr eine Open-Source Projekt unpassend ware.

Es existieren jedoch einige Third-Party-Ansatze, die versuchen, diese Llicke zu
schlieBen. Zu den bekanntesten zahlen Altermesh flur die Unreal Engine sowie
BEngine, welche sowohl Unity als auch Unreal unterstutzt.

Beide Werkzeuge ermdglichen eine eingeschrankte Synchronisierung von
Geometry Node-Systemen zwischen Blender und der jeweiligen Game Engine mit
der Mdglichkeit die in Blender exponierten Parameter direkt anzupassen, ohne
erneuten Ex- und Import.

Da es sich hierbei jedoch um kleine, unabhangige und kommerzielle Projekte
einzelner Entwickler handelt, ist ihre Langzeitstabilitat stark von Updates der
Engines und von Blender selbst abhangig.

Zum jetzigen Zeitpunkt scheint Altermesh nicht mehr unterstitz zu werden
(letztes Update am 21. Mai 2024, ohne weitere Kommunikation seitens des
Entwicklers auf dem offiziellen Discord-Server). Der Entwickler der BEngine
hingegen engagiert sich noch aktiv mit der Entwicklung des Tools und geht auf
Nutzerfeedback und spezifische Probleme ein.

Jede neue Version kann jedoch zu Komplikationen fihren und das Risiko fiur eine
Ende der Unterstlitzung seitens der Entwickler ist hoch. AuBerdem fihrt das
Aufbauen auf bestehende thrid-party Lésungen zu weiterem Installationsaufwand
und ggf. mehr Kosten seitens der LPTK-Nutzer. Deshalb habe ich mich bewusst
gegen die bestehende Lésung von Externen als Synchronisations-Tool
entschieden. Dennoch war klar, dass flr ein nutzbares Werkzeug ein non-
destruktiver, einfacher und schneller Workflow unersetzlich ist, weshalb eine
eigene LOsung, der ,Collection Exporter' entwickelt wurde, welcher im nachsten
Kapitel behandelt wird.

47

4.2.5.1 Collection Exporter

In Game-Engine-Umgebungen sind Assets typischerweise in Ordnerstrukturen
organisiert, wobei die 3D-Modelle in spezifischen Unterordnern abgelegt werden.
StandardmaBig werden die Modelle manuell Uber das Export-Menu in gangigen
Formaten wie .fbx oder .gltf in den entsprechenden Ordnern gespeichert. Dieser
manuelle Workflow ist jedoch zeitaufwendig, potenziell destruktiv und
fehleranfallig, insbesondere bei komplexen Szenen mit vielen Objekten oder bei
haufigen Iterationen wahrend der Entwicklungsphase.

v & Terrain Kollektionen>* sind ein Werkzeug zur Organisation
> LanternTall in Blender. Sie funktionieren ahnlich wie Ordner
> LanternTall.001 und ermdglichen es, verschiedene Objekte logisch
> Path1 Zu gruppieren, ohne diese in eine
> Terrain2 Transformationsbeziehung zu stellen (im
Buildings Gegensatz zum Parenting). Diese Kollektionen sind
Ivyl die Basis der implementierten Export-Logik.

TargetStand

Abbildung 42 zeigt eine einfache
Kollektionsstruktur, hierbei wurden drei
Kollektionen angelegt und mit verschiedenen
Objekten gefllt, um diese logisch voneinander zu
trennen.

Tower
Nature
Birch
Oak
Pine2

Abbildung 42: Beispielhafte Darstellung einer
Kollektionsstruktur im Outliner (eigene Darstellung).

Um einen moglichst einfachen und non-destruktiven v &) LPTK

Iterationsworkflow zu bieten, wurde der ,Collection > Assets

Exporter' entwickelt, welcher sich direkt im Add-on- « Collection Exporter

Panel des LPTK befindet. 2 Collction Exportr

Uber ihn kénnen Kollektionen innerhalb der Blender- Export Format: FBX

Szene einem beliebigen Pfad zugewiesen werden, wie Collections to Export:

in Abbildung 43 dargestellt. Collection: & Terrain X
Formatspezifische Exporteinstellungen kénnen Uber Epen P e

das Zahnrad konfiguriert werden. Zum Anlegen neuer [HISESEEELE x
Kollektionen im Export-Workflow kénnen diese Uber seafizen A N e

den ,Add Collection"-Knopf hinzugefiuigt werden. Collection: @ Nature X
Driickt der Nutzer den ,Start EXpOI"t“'KnOpf, wird die Export Path: C:\Users\JoshualL..ssets\LPTK\Nature

zentrale Methode des Exporter-Skripts ausgefuhrt Add Collection

und die Objekte der zugehdérigen Kollektionen in die Start Export

entsprechenden Verzeichnisse exportiert.

> Mesh Renamer

!Dle Implementler_ung des ,Collection-Exporters' wird Abbildung 43: ,Collection Exporter'-Panel
im folgenden Kapitel besprochen. innerhalb des LPTK Add-ons (eigene Darstellung).

54 https://docs.blender.org/manual/en/latest/scene_layout/collections/collections.html
48

4.2.5.2 Implementierung der Export-Logik

Die Export-Funktion iteriert Uber alle vom Nutzer definierten ,Collection-Entries',
verarbeitet deren Inhalt und exportiert die liberarbeiteten Meshes in das
gewulnschte Zielformat. Der Workflow bleibt dabei vollstandig non-destruktiv, da
ausschlieBlich temporare Objektkopien genutzt werden. Die folgenden Schritte
fassen die grundlegende Funktionsweise zusammen:

1. Duplikation der Export-Objekte

Flr jedes Objekt wird zunachst Gberpriift, ob es einen exportierbaren Typ besitzt
(,MESH", ,,CURVE" oder ,FONT") AnschlieBend wird eine temporare Kopie
erzeugt. Dies stellt sicher, dass der Exportprozess die Ursprungsobjekte nicht
verandert.

. for obj in collection.objects:
if obj.type in {'MESH', 'CURVE', 'FONT'}:

dup = obj.copy()
dup.data = obj.data.copy()

2. Konvertierung der Objekte in ein Mesh

AnschlieBend werden die zugelassenen Objekte in ein Mesh konvertiert, dabei
werden die Geometry Nodes Modifier angewandt und die prozedural erzeugte
Geometrie realisiert.

243. bpy.ops.object.convert(target="MESH")

3. \Vertex Color Baking Automation'

Falls vom Nutzer aktiviert, wird folgend ein automatisierter Bake-Prozess
ausgefihrt, der die Materialfarben in ein Vertex-Color-Attribut Gbertragt (wird im
folgenden Kapitel besprochen).

4. Export an den spezifizierten Pfad

Danach wird das Objekt anhand seines Namens und dem in der ,Export
Collection' definierten Pfades exportiert, dabei werden die in den
Exporteinstellungen festgelegten Parameter bericksichtigt (Forward Axis etc.).

5. Entfernung der Duplikate aus der Datei

AbschlieBend wird das temporare Duplikat vollstdndig aus der Szene entfernt,
sodass der Nutzer ohne Veranderung an seinem Projekt weiterarbeiten kann.

275. bpy.data.objects.remove(dup, do_unlink=True)

Das Ergebnis ist eine Reihe einzelner FBX-Dateien im definierten Zielordner,
wahrend die originale Blender-Datei unverandert bleibt. Nutzer kénnen durch
diesen Workflow mit einem Knopf ihre Game-Engine Umgebung mit ihrer Blender
Szene synchronisieren.

49

4.2.5.3 Vertex Color Baking Automation'

Wie in Kapitel 2.3 gezeigt, verzichtet der Low-Poly-Artstyle zwar haufig auf
komplexe Materialien, dennoch kénnen einfache Farbverlaufe oder leichte
Variationen die visuelle Qualitat deutlich erhéhen (siehe Abbildung 44). Solche
Gradients werden in Blender typischerweise Uber Shader erzeugt, die jedoch von
Game-Engines nicht direkt Ubernommen werden kénnen. Um den Effekt zu
Ubertragen, missten die Materialien entweder in der Engine nachgebaut oder als
Textur mit korrekt erstellten UV-Maps exportiert werden. Beides manuelle und
destruktive Arbeitsschritte, die dem non-destruktiven LPTK-Workflow
widersprechen.

Um einfache Materialeffekte dennoch automatisiert exportieren zu kénnen, wurde
innerhalb des ,Collection Exporters' eine Vertex-Color-Baking Automation
integriert. Vertex Colors werden direkt im Mesh gespeichert und kédnnen ohne
zusatzliche Materialien von allen gangigen Game-Engines verwendet werden.

Wird Vertex Color Baking in den Exportoptionen
aktiviert, durchlauft jedes exportierte Objekt nach der
Mesh-Konvertierung den folgenden Ablauf:

1. Erstellen des Vertex-Color-Attributs

Auf der Face Corner Domain wird ein neues Farb-
Attribut erzeugt. Existiert dieses bereits, wird es
Uberschrieben.

2. Konfiguration der Bake-Einstellungen

Das Skript wechselt in die Cycles-Renderengine,
aktiviert den Diffuse Bake und setzt ,Vertex-
Colors" als Ziel. Direkte und indirekte
Beleuchtung werden deaktiviert, sodass
ausschlieBlich die Materialfarbe gebacken wird.

3. Bake-Prozess

Die Farbinformationen werden in das Vertex-Color-Attribut
geschrieben.

4. Ersetzen des Materials)) _
Abbildung 44: Gegeniiberstellung zweier

AbschlieBend wird das Ursprungsmaterial auf dem gleicher Tannen, links ohne Farbverlauf,
temporaren Objekt durch einen einfachen Diffuse- rechts mit Farbveriaur (eigene Darstellung).
Shader ersetzt, welcher das gebackene Vertex-Color-

Attribut als Base Color verwendet. Dieses Setup kann von gangigen Game-

Engines direkt interpretiert werden.

Dieses Verfahren ermdéglicht einen vollsténdig automatisierten und non-
destruktiven Export von einfachen Farbvariationen, ohne dass UV-Maps oder
Texturen erstellt werden mussen. Gerade im Low-Poly-Kontext stellt dies eine
schnelle Mdéglichkeit dar, Farbvariationen aus Blender in Game-Engines konsistent
zu Ubertragen.

50

4.2.6 Entwicklung des ,Thumbnail-Renderers'

Wie in den vorherigen Kapiteln beschrieben, ist die einfache Erweiterbarkeit des
LPTK ein zentrales Ziel. Die Kombination aus der klaren Ordner- und JSON-
Struktur (siehe 4.2.1) und dem dynamisch generierten Asset-Panel (siehe 4.2.4)
ermdglicht eine unkomplizierte Integration neuer Node Setups.

Damit diese neuen Assets nicht nur funktional, sondern auch visuell konsistent in
der Benutzeroberflache eingebunden werden, wurde ein separater, semi-
automatischer ,Thumbnail-Renderer' entwickelt. Dieser ermdglicht die Erzeugung
einheitlicher Vorschaubilder flir alle Node Setups.

Der Renderer ist vollstandig in einer separaten Blender-Datei implementiert, die
unter ,thumbnailRenderer.blend™ im Root-Verzeichnis des Add-ons abgelegt ist.
Diese Datei enthalt eine vorkonfigurierte Szene, bestehend aus:

e einer Kamera mit fixer Perspektive,

e einer Beleuchtungssituation,

e sowie einer daflir vorgesehenen Kollektion namens ,GeoNodes', in welche
alle zu rendernden Assets platziert werden.

Neben dem 3D-Viewport befindet sich in der Datei ein gedffneter Text-Editor, der
ein Python-Skript enthalt. Dieses automatisiert den gesamten Rendervorgang.
Beim Ausflihren des Skripts werden alle Objekte der ,GeoNodes'-Kollektion
nacheinander aktiviert, gerendert, im Thumbnail-Ordner mit ihrem Namen
gespeichert und deaktiviert.

Die zentrale Funktion findet in diesem Code-Ausschnitt statt:
for obj in geo_collection.objects:

obj.hide_render = True
for obj in geo_collection.objects:

obj.hide_render = False

ile
2e
B
4.
S
®c
7
8.
OF

output_path = os.path.join(output_dir, f"{obj.name}.jpg")
scene.render.filepath = output_path

bpy.ops.render.render(write_still=True)
print(f"Rendered and saved: {output_path}")

obj.hide_render = True
So kann das Thumbnail-Verzeichnis einfach und einheitlich aktualisiert werden,
wenn sich Anderungen an bestehenden Setups ergeben oder neue hinzugefligt
werden.

Da es sich um ein fortgeschritteneres Feature handelt, wurde dieses nicht direkt
in der UI implementiert. Flr Entwickler mit diesem Anspruch ist dies aber ein
einfacher und zuganglicher Weg.

51

5. Empirische Evaluation

Nachdem die konkrete Umsetzung des LPTKs besprochen wurde, erforscht dieses
Kapitel das Potenzial einer prozeduralen Low-Poly-Asset-Bibliothek im Kontext
der Spieleentwicklung. Dabei wurde das LPTK im Rahmen einer Nutzerevaluation
getestet. Ziel war es, Bedienbarkeit, Effizienz und Ergebnisqualitat des Systems
im Vergleich zu einem rein manuellen Workflow zu analysieren und zu bewerten,
inwiefern das LPTK den Gestaltungsprozess erleichtert und qualitativ verbessert.

5.1 Aufbau und Methodik

Die Untersuchung wurde mit finf Teilnehmern durchgeflihrt, die einen
zielgruppenorientierten Querschnitt potenzieller Anwender abbilden sollten.
Die Zusammensetzung war wie folgt:

e 2 Teilnehmer ohne Vorerfahrung in 3D-Modellierung oder
Spieleentwicklung

e 2 Teilnehmer mit grundlegender Blender-Erfahrung und professioneller
Erfahrung in der Spieleentwicklung
e 1 Teilnehmer mit professioneller Erfahrung in der Erstellung stilisierter
Low-Poly-Assets in Blender
Jede Testperson erstellte in zwei Durchlaufe dasselbe Level-Szenario, basierend
auf einer vorgegebenen, handisch gezeichneten Referenzskizze (Anhang A7).
Einmal mit Blender ohne Add-on und einmal mit Blender in Kombination mit dem
entwickelten LPTK. AnschlieBend wurde das Level in beiden Szenarien in die
Godot-Engine importiert.

Die Tests wurden einzeln durchgefihrt und begleitet. Wahrend die
EinfUhrungsphasen angeleitet wurden, erfolgte die Bearbeitung beider Szenarien
selbststandig. Technische Rickfragen wurden in beiden Durchlaufen beantwortet,
ohne die inhaltliche Lésung vorzugeben. Die durchschnittliche
Durchflihrungsdauer betrug circa 70 Minuten.

Evaluationsablauf:

Evaluationsschritt Dauer
Einweisung in Blender ~10 min
Terrainerstellung ohne Add-on ~15 min
Export + Import nach Godot ohne Add-on ~5 min
Terrainerstellung mit LPTK ~15 min
Export + Import nach Godot mit LPTK ~5 min
Fragebogen ~5 min
Qualitatives Kurzinterview ~5 min

Der Fragebogen wurde mithilfe von Google Forms umgesetzt und bestand aus
vier Abschnitten. Zunachst wurde die Vorerfahrung der Teilnehmer erhoben.
AnschlieBend bewerteten die Tester den Workflow der Terrain-Erstellung einmal
ohne und einmal mit dem LPTK. Darlber hinaus stand ein Freitextfeld zur
Verfligung, in dem die Teilnehmer angeben konnten, welche Aspekte des LPTK
ihnen besonders positiv oder negativ aufgefallen sind. AbschlieBend wurde ein
auf die Vorerfahrung der Teilnehmer angepasstes Kurzinterview durchgefiihrt um
die Nutzererfahrung vertieft zu besprechen.

52

5.2 Quantitative Ergebnisse

Nutzer-Informationen

Erfahrung:

3D-Modellierung @ 2.00

Blender @2.40

Prozedurale Modellierung # @ 1.40 ¥

1 2 3 4

Skala (1 = gar nicht, 5 = sehr viel)

Abbildung 45: Nutzer-Evaluation, Selbsteinschatzung relevanter Vorerfahrung (eigene Darstellung).

Abbildung 45 zeigt die Selbsteinschatzung der Teilnehmer auf einer 5-stufigen
Likert-Skala hinsichtlich ihrer Erfahrung mit 3D-Modellierung, Blender als
Software und prozeduraler Modellierung. Die Stichprobe weist durchschnittlich
niedrige bis moderate Erfahrungswerte auf, insbesondere im Bereich prozeduraler
Modellierung (@ 1,4), ist jedoch in anderen Bereichen individuell stark
durchmischt. Die Blendererfahrung bildet bspw. Werte von 1 bis 5 ab. Diese
Zusammensetzung entspricht der angestrebten Zielgruppe des LPTK und bildet
eine geeignete Grundlage flr die Bewertung der Nutzbarkeit des Systems.

53

Quantitativer Vergleich der Nutzererfahrung

Zufriedenheit mit dem Ergebnis

[Blender [LPTK
LPTK 2338

Blender l— 222

Einfachheit der Umsetzung

LPTK — 234 s
Blender 226 s —l
1 2 3 4 5

Kontrolle Gber die Terrain-Form

LPTK — 830
Blender '— | @30 —{
1 2 3 4 5

Intuitivitat des Workflows

LPTK @26 ! —‘
Blender |— o 228
1 2 3 4 5
Abbildung 46: Quantitativer Vergleich der Skala (1 = gar nicht, 5 = sehr viel)

Nutzererfahrung des LPTK (eigene Darstellung).

Die quantitativen Ergebnisse, dargestellt in Abbildung 46, zeigen ein klares
Muster. Die Einfachheit der Nutzung und speziell die Zufriedenheit mit den
Ergebnissen bewerten die Tester mit dem LPTK deutlich héher. Wahrend die
Zufriedenheit mit Blender bei @ 2,2 liegt, wurde sie mit dem LPTK mit @ 3,8
bewertet. Die Einfachheit der Umsetzung bewerteten die Teilnehmer mit dem
LPTK mit @ 3,4, mit Blender hingegen nur mit @ 2,6. Bei der geflihlten Kontrolle,
welche die Tester Uiber das Terrain hatten, liegen Blender und das LPTK mit @ 3,0
gleich auf. Nur bei der Intuitivitat des Workflows schneidet das LPTK mit @ 2,6
minimal schlechter als Blender mit @ 2,8 ab.

54

5.3 Qualitative Ergebnisse

Das qualitative Feedback aus dem Freitextfeld (Anhang A5) sowie den
abschlieBenden Kurzinterviews (Anhang A6) liefert eine vertiefte Einsicht in die
Nutzererfahrung mit dem LPTK.

Besonders positiv hervorgehoben wurden die kurvenbasierten Assets, die sich
direkt in die Szene ,malen" lassen. Das einfache Zeichnen von Baumen, Pfaden
und Efeu wurde von mehreren Teilnehmern ausdriicklich gelobt und als deutlich
intuitiver und flexibler beschrieben als herkdmmliche, statische, Asset-Workflows.
Insbesondere die erfahreneren Entwickler betonten, dass dieses
Interaktionsprinzip eine wesentlich natirlichere und effizientere Gestaltung
ermadglicht.

Ein wiederkehrendes Thema war die sofortige visuelle Qualitat der
Ergebnisse. Testern gefiel, dass Formen ,direkt gut aussehen™, automatisch
passende Materialien zugewiesen werden und das System damit bereits in
nach wenigen Arbeitsschritten asthetische und stimmige Resultate
liefert, so konnten auch Tester ohne Modelliererfahrung
Uberzeugende Ergebnisse erzielen (Abbildung 47 und 48, weitere
Resultate im Anhang A2). AuBerdem betonten die Tester,
dass aufgrund der schnellen Ergebnisse, ,die
Arbeit mit dem LPTK mehr Spal3 macht".

Gleichzeitig zeigte das qualitative Feedback auch
klare Verbesserungspotenziale am LPTK. Das
,ProceduralTerrain'-System war zentral zur
Modellierung der Szene und wurde von einigen Teilnehmern
als ,unintuitiv® und ,kompliziert" beschrieben. Insbesondere der
Boolean-basierte Workflow war flr die Tester, die mit dem Konzept
nicht vertraut waren, schwierig zu kontrollieren und appiidung 47: zeigt das Ergebniss der

es kam bei einigen zu Problemen und Unsicherheiten. Modellierung der Referenzskizze eines Test-
Einige Nutzer bevorzugten daher das alternative Nutzers mit dem LPTK (eigene Darstellung).
,MeshTerrain', welches als wesentlich kontrollierbarer
und vorhersehbarer wahrgenommen wurde.

Auffallig ist, dass viele der kritischen Punkte nicht auf das LPTK
selbst, sondern auf Blender als Entwicklungsumgebung
zurickgefthrt wurden. Mehrere Tester gaben an,

dass sie weniger durch das Toolkit, sondern 3
vielmehr durch fehlendes Blender-Vorwissen, auf

welchem das LPTK teilweise aufbaut, eingeschrankt
wurden. Dies deutet darauf hin, dass das LPTK zwar einen
niedrigschwelligen und benutzerfreundlichen Ansatz bietet, jedoch

weiterhin an die Komplexitat Blenders gebunden Abbildung 48:Zeigt das Ergebnis der

bleibt. Modellierung der Referenzskizze eines Test-

s . o Nutzers ohne das LPTK (eigene Darstellung).
Zusammenfassend bestatigen die qualitativen

Rickmeldungen, dass das LPTK die kreative Arbeit deutlich erleichtert, dsthetisch
hochwertige Ergebnisse ermdglicht und insbesondere durch seine

55

kurvenbasierten Interaktionswerkzeuge Uberzeugt. Gleichzeitig zeigen die
Aussagen der Tester, an welchen Stellen eine Weiterentwicklung sinnvoll ware.

6. Diskussion

Die Diskussion gliedert sich in drei Abschnitte, die gemeinsam darauf abzielen,
die in Kapitel 1 formulierte Forschungsfrage unter Bericksichtigung der zentralen
Untersuchungsbereiche zu beantworten.

Zunachst wird das LPTK als konkreter Entwicklungsansatz kritisch reflektiert,
wobei Starken, Schwachen und mdgliche Erweiterungen des Systems
herausgearbeitet werden.

Im Anschluss werden die technischen Méglichkeiten und Grenzen von Blender
und den Geometry Nodes als Grundlage prozeduraler Assetgenerierung sowie
deren Einbindung in eine Add-on-basierte Interaktionsoberflache diskutiert.

AbschlieBend wird der Ansatz prozeduraler Assets im Kontext der
Spieleentwicklung allgemein bewertet, um die gewonnenen Erkenntnisse in einen
groBeren fachlichen Zusammenhang einzuordnen.

6.1 LPTK als entwickelter Ansatz

Die Entwicklung des LPTK zeigt, dass der Ansatz einer benutzerorientierten
prozeduralen Asset-Bibliothek grundsatzlich funktioniert und die prozedurale
Arbeitsweise einen merkbaren Mehrwert liefern kann.

Der Post-Processing Mixed-Authorship-Ansatz, welchen viele der erstellten Assets
verfolgten, hat sich als besondere Starke des Systems herausgestellt. Systeme
die eine Basisform, wie eine Kurve oder ein einfaches Mesh zu einem visuell
komplexen und ansprechenden Ergebnis formen, haben sich in der
Testerevaluation als intuitiv und wirkungsvoll herausgestelit.

Diese direkte, skizzenartige Arbeitsweise reduziert technische Komplexitat
splrbar und fordert einen kreativen, experimentellen Workflow, was genau dem
Ziel des Projekts entspricht.

Das Toolkit zeigt auBerdem, dass die Nutzung prozedurale Systeme bei der
Erstellung kleiner bis mittelgroBer Low-Poly-Szenen deutlich zeit-effizienter ist.
Feedback durch Tester und eigene Erprobung zeigen, dass der Look der
generierten Assets konsistent ist. Das System macht sichtbar, dass prozedurale
Methoden, wenn sie gut aufbereitet sind, auch fir weniger erfahrene Nutzer
einfach zuganglich gemachte werden kénnen.

Gleichzeitig ist wahrend der Entwicklung und Evaluation deutlich geworden, dass
der Umfang des LPTK zu ambitioniert war. Der Anspruch war es, nur mit dem
System komplexe Szenen vollstandig abbilden zu kénnen. Die Entwicklung
einzelner Funktionen und Systeme hat jedoch sehr viel Zeit in Anspruch
genommen. Das urspringliche in 4.1.4 thematisierte System zur
Wassergruppierung ist bspw. aufgrund unzureichender Erfahrung und Funktionen
innerhalb Blenders in eines der gréBten Projekte dieser Arbeit ausgeartet.
Dadurch und durch andere Komplikationen wurde einige Node Setups, sowohl in
ihrem Funktionsumfang als auch in ihrer Parametrisierung und Bedienlogik, nicht

56

vollstandig umgesetzt. Aus dem ambitionierten quantitativen Anspruch und der
mangelnden Zeit entstand ein Qualitatsgefadlle zwischen einzelnen Systemen was
beispielsweise dazu flihrte, dass einige Features des ,ProceduralTerrains' nicht im
,MeshTerrain' implementiert waren, was auch bei der Testerevaluation flr
Verwirrung sorgte.

Einige geplante Features wie Innenrdume fiir das Tower- und Castle-Setup sowie
ein mesh-basiertes Haussystem konnten nicht zufriedenstellend umgesetzt
werden und wurden abgebrochen, obwohl begehbare Innenraume in vielen
Spielkonzepten einen deutlichen Mehrwert bieten wurden.

Trotz dieser Grenzen zeigt die in dieser Arbeit entwickelte Implementation des
LPTK ein hohes Potenzial. Die Werkzeuge funktionieren, die Interaktion ist
intuitiv, und die Ergebnisse sind konsistent reproduzierbar. Die Testerevaluation
bestatigt, dass das Toolkit technische Hlirden senkt und kreative Entscheidungen
deutlich erleichtert. Damit liefert das LPTK nicht nur einen funktionsfahigen
Prototypen, sondern auch wichtige Erkenntnisse darliber, wie eine prozedurale
Asset-Bibliothek gestaltet sein kann, um zuganglich, erweiterbar und fir die
Spieleentwicklung einen tatsachlichen Mehrwert zu liefern.

6.2 Blender und Geometry Nodes als Basis des LPTK

Die Wahl von Blender und Geometry Nodes als technisches Fundament des LPTK
hatte Vor- und Nachteile. Nachdem in 3.2.1 die Grinde genannt wurden, die vor
dem Start des Projekts fur Blender sprachen, wird in diesem Kapitel die
Entscheidung nach Durchfihrung des Projekts diskutiert.

Wie bereits erwahnt, stellte die bereits vorhandene Erfahrung mit Blender einen
entscheidenden Vorteil fir die Wahl dar. Die Entwicklung der Systeme konnte
nach kurzer Einarbeitung in die Grundkonzepte der Geometry Nodes beginnen,
ohne dass viel Zeit in das Erlernen der grundlegenden Oberflachen einer
alternativen Umgebung wie Houdini investiert werden musste.

Die grundlegenden Konzepte zur Funktionsweise von Geometry Nodes wirken
anfangs komplex. Das Spreadsheet, Fields, Instanziierung und Selektion
unterscheiden sich in vielerlei Hinsicht stark von manuellen Workflows und
schrecken selbst erfahrene Blender-Nutzer anfangs ab. Sobald die
grundlegenden Prinzipien jedoch verstanden sind, lassen sich Systeme flexibel
erweitern, funktionelle Muster erkennen und in unterschiedlichen Kontexten
wiederverwenden.

Durch die Kombination verschiedenster Nodes sind umfangreiche Systeme, die
komplexe Probleme I6sen, mit Geometry Nodes durchaus umsetzbar. Haufig wird
jedoch selbst flr die Erstellung simpler Systeme eine Vielzahl an kombinierten
Nodes bendtigt, was die Erstellung der Node Trees unnétig verkompliziert.

Was Blender als Basis rickblickend besonders interessant fir Mixed-Authorship
orientierte Systeme macht, sind die klassischen Modellierungswerkzeuge, die
bereits sehr ausgereift sind und sich mit prozeduralen Systemen wie
beispielsweise dem MeshTerrain optimal kombinieren lassen. Polygonale
Modellierung, Sculpting oder Hair-Sculpting bieten eine starke Grundlage und
sind optimal flir experimentelle Systeme wie die in 4.1.6 beschriebenen

57

,ScatterCurves' nutzbar. Diese Kombination aus traditioneller Modellierung und
prozeduraler Generierung war fur das LPTK ein groBer Vorteil, da viele Ideen zur
Interaktion mit dem System Ideen aus beiden Bereichen miteinander verknUpft.

Dem entgegen birgt die Wahl von Blender und insbesondere der Geometry Nodes
zur Erstellung einer professionellen auch einige Risiken.

Wie bereits in 2.5.5. beschrieben, befinden sich die Geometry Nodes noch in
voller Entwicklung und wurden in den letzten Jahren mehrmals fundamental
verandert. Das LPTK wurde mit Blender 4.5 entwickelt, mit der Veréffentlichung
von Blender 5.0 wurden die Geometry Nodes erneut in vielen Bereich
Uberarbeitet, sodass einzelne Setups in Zukunft potenziell nicht mehr
funktionieren oder angepasst werden missen. Diese fehlende Stabilitat
erschwert es, langfristig nutzbare Systeme zu bauen und in einem
professionellen Kontext einzusetzen.

Auch die Dokumentation ist nicht durchgehend zuverlassig. Grundlagen werden
teilweise gut erklart, aber komplexere Konzepte wie Repeat Zones oder
fortgeschrittene Selektionslogiken werden nur sehr oberflachlich behandelt und
nicht anhand passender Beispiele besprochen. In der Community gibt es zwar
einzelne Creator, die komplexere Systeme vorstellen, doch im Vergleich zur
klassischen Modellierung oder Shader-Entwicklung ist das verfugbare
Lernmaterial fir Geometry Nodes deutlich geringer, was dazu fuhrt, dass bei
spezifischen Problemen eigene Lésungen erarbeitet werden mussen. Viele
Tutorials sind zudem, ahnlich wie die Dokumentation, schnell veraltet, da sich die
Nodes standig verandern, was die Fehlersuche oder Weiterentwicklung
zeitaufwendig macht.

Ein weiterer limitierender Faktor zur Erstellung nutzerfreundlicher Systeme ist
das Modifier-Stack eingebundene Interface der Geometry Nodes. Viele
Parameter, welche die prozedurale Logik steuern kdnnen, nicht verfligbar
gemacht werden. Beispielsweise lassen sich weder Kurven (Float/RGB) noch
Colors Ramps exponieren. Die Konfiguration des Panels ist ebenfalls
eingeschrankt. Zwar werden Parameter im Modifier je nach Nutzbarkeit visuell
kodiert, es gibt aber keine Mdglichkeit exponierte Parameter dynamisch zu
generieren, was die kontextabhangige UI-Gestaltung erschwert, wodurch
zwangslaufig Kompromisse bei Bedienbarkeit und Klarheit der Systeme
entstehen.

Hinzu kommt die fehlende native Synchronisation in gangige Game Engines. Flr
einen Spieleentwicklungs-Workflow ware eine native und direkte Anbindung,
durch ein neues Dateiformat oder analog zur Implementation der Houdini Engine,
ein groBer Vorteil.

Insgesamt zeigen Blender und Geometry Nodes im Speziellen jedoch ein groBes
Potenzial, vor allem fur kleine Teams oder Solo-Entwickler, die nach einer
kostenginstigen und flexiblen Lésung suchen und denen kontinuierliche
Weiterentwicklung wichtiger ist, als absolute Langzeitstabilitat.

Insgesamt kann festegestellt werden dass, sich Blender fiir sehr umfangreiche,
langfristig gepflegte Bibliotheken heute nur eingeschrankt empfehlen lasst. Flr
kleinere, experimentelle Systeme, wie das LPTK, ist Blender aber eine optimale

58

Basis, weil es schnelle Iterationen erlaubt, eine starke Modellierungsumgebung
mitbringt und prozedurale Experimente sehr direkt unterstutzt.

6.2.1 Blender Python API zur Add-on Entwicklung

Die Entwicklung des Add-ons mithilfe der Blender Python API (bpy) nahm im
Vergleich zur Erstellung der prozeduralen Assets weniger Zeit in Anspruch, soll in
diesem Kontext dennoch kurz reflektiert werden.

Die bpy ist ein machtiges Werkzeug und flr die professionelle Integration
benutzerdefinierter Funktionen in Blender unumganglich. Sie bietet im Kontext
des LPTK eine Flexibilitat, welche mit dem integrierten Asset-Library-System
nicht erreicht worden ware. So ermdéglichten sie eine Vielzahl an Workflow-
Optimierungen, wie die in 4.2.2 beschriebenen, kontextspezifischen ,NodeTypes',
wodurch die Nutzung des LPTK erleichtert wurde.

Gleichzeitig traten wahrend der Entwicklung spezifischer Features einige
Herausforderungen auf. So ist die in Kapitel 4.2 angesprochene Operatoren-Logik
von Blender stark kontextabhangig. Dadurch kann die Ausfihrung der
Instruktionen abweichend vom erwarteten Verhalten erfolgen, wenn sich der
Nutzer in einem spezifischen Fenster oder UI-Element befindet. Diese
Kontextsensitivitat erschwert das Debugging erheblich und kann bereits bei
geringfihgig unterschiedelicher Nutzung zu unerwarteten Fehlern flhren.

Zuletzt leidet auch die Blender Python API, ahnlich wie die Geometry Nodes,
stellenweise unter einer unzureichenden Dokumentation. Durch die schnelle
Weiterentwicklung, Anderung von Konzepten und die Open-Source-Natur kommt
es stellenweise zu undokumentierten Funktionen. Fur die Integration spezifischer
Features, wie der in Kapitel 4.2.5.3 beschriebenen ,Vertex Color Baking
Automation', existieren wenige Ressourcen, was die Entwicklungszeit deutlich
verlangert.

6.3 Prozedurale Assets flr die Spielentwicklung

Im Folgenden wird der prozedurale Ansatz im Kontext der Spieleentwicklung
diskutiert, unabhangig von der spezifischen Entwicklungsumgebung. Im Fokus
stehen dabei Systeme mit einem Mixed-Authorship-Ansatz>>, welche den Kern
dieser Arbeit und des entwickelten LPTKs darstellen.

Die Entwicklung prozeduraler Systeme zur Asset-Generierung ist initial meist mit
einem deutlich héheren Aufwand verbunden als die manuelle Erstellung einzelner
Modelle. Ein einfacher Low-Poly-Baum kann beispielsweise innerhalb weniger
Minuten manuell modelliert und texturiert werden, wahrend die Entwicklung
eines Systems, das vergleichbare Baume automatisch generiert, wesentlich mehr
Zeit beansprucht. Prozedurale Losungen amortisieren sich daher vor allem dann,

55 Die ,Autorenschaft" des Nutzers ist innerhalb der im LPTK implementierten Systeme
starker gewichtet als in den in der Literatur beschriebenen Beispielen, weshalb der Begriff
nur bedingt zutrifft. Die hier vorgestellten Systeme lieBen sich praziser als ,user-
authoritative' bzw. ,nutzer-autoritativ' beschreiben.

59

wenn ein Asset haufig eingesetzt wird oder signifikant von Eigenschaften wie
Variation, Anpassbarkeit und Wiederverwendbarkeit profitiert.

Aus diesem Grund muss in der Spieleentwicklung kritisch abgewogen werden, ob
ein Asset durch prozedurale Eigenschaften einen realen Mehrwert erhalt. Ein
prozeduraler Ansatz sollte niemals als Selbstzweck dienen. Die bloBe technische
Machbarkeit rechtfertigt nicht automatisch den Entwicklungsaufwand.
Insbesondere Technical Artists und Entwickler neigen dazu, aus technischer
Begeisterung komplexe Lésungen zu implementieren, ohne dass die
Problemstellung diese Komplexitat erfordert. Weder das Endergebnis noch der
Workflow profitieren von einer theoretisch unendlichen Anzahl an Baumvarianten,
wenn das Projekt faktisch nur wenige, klar definierte Modelle bendtigt.

Bieten prozedurale Systeme jedoch einen funktionalen Vorteil, etwa durch die
prazisere Abbildung einer kreativen Vision, erleichterte Anpassungen oder eine
splrbare Beschleunigung des Workflows, entfalten sie ein erhebliches Potenzial.

Besonders der Bereich Mixed-Authorship-Asset-Packs, wie in dieser Arbeit
erforscht, bietet hierbei vielversprechende Mdglichkeiten. Hier greifen
Skaleneffekte, die den hohen Initialaufwand der Entwicklung rechtfertigen. Da
das prozedurale System nicht nur fir ein einziges Projekt, sondern
projektibergreifend von einer Vielzahl von Entwicklern genutzt werden kann,
amortisiert sich die komplexe Entwicklung deutlich schneller als bei einer
proprietaren In-House-LOsung.

Durch die Prozeduralisierung werden zudem wesentliche Nachteile klassischer
Asset-Packs geldst. Der Nutzer muss seine Vision nicht mehr an die statischen
Formen der vorhandenen Assets anpassen. Stattdessen ermdglichen es die
prozeduralen Parameter, die Assets flexibel an die eigene kreative Vision
anzugleichen.

Trotz dieses Potenzials stellen Mixed-Authorship-Systeme flr 3D-Geometrie in
gangigen Asset-Stores derzeit noch eine Nische dar. Wahrend prozedurale
Materialien in der Industrie bereits weit verbreitet sind, existieren kaum
vergleichbare, zugangliche Lésungen flr die Modellgenerierung. Die Entwicklung
und Etablierung solcher Asset-Packs wirde somit eine signifikante Lucke im
aktuellen Marktangebot schlieBen und kénnte einen echten Mehrwert bieten.

60

7. Fazit und Ausblick

Die intensive Auseinandersetzung mit der prozeduralen Modellierung sowie die
praktische Ausarbeitung des LPTK haben gezeigt, dass im Mixed-Authorship-
Ansatz ein groBes Potenzial steckt. Die Ergebnisse machen deutlich, dass dieser
Weg, verglichen mit statischen Asset-Packs und der manuellen Modellierung,
einen echten Mehrwert bieten kann, sobald Flexibilitat, Anpassbarkeit und
Entwicklungsgeschwindigkeit gefragt sind.

Zwar existieren auf dem Markt bereits vereinzelte prozedurale Systeme flr
spezifische Aufgaben wie die Terrain-Generierung, umfassende und zugangliche
Bibliotheken flr Indie-Entwickler fehlen hingegen weitgehend. Die Arbeit zeigt,
dass der Ansatz insgesamt noch unterschatzt wird und viele Méglichkeiten fir
effizientere Workflows bietet.

Gleichzeitig haben Evaluation und Diskussion des Ansatzes aber auch
Herausforderungen aufgezeigt. Damit solche Werkzeuge ihren vollen Nutzen bei
der potenziellen Zielgruppe entfalten kénnen, missen sie so nah wie mdglich am
Zielsystem, der Game-Engine, integriert sein. Das LPTK ist zum jetzigen
Zeitpunkt am starksten durch die Integration in Blender eingeschrankt. Trotz des
entwickelten ,Collection Exporters' und der ausgearbeiteten Nutzeroberflache
stellt dieser technische Zwischenschritt eine groBe Hirde dar.

Fur das LPTK ist das Projekt mit dieser Arbeit dennoch nicht beendet. Geplant
sind eine Migration auf Blender 5.0 sowie eine Aufarbeitung der einzelnen
Systeme basierend auf dem erhaltenen Nutzerfeedback. Mein Ziel ist es, das
Toolkit anschlieBend kostenlos zu veréffentlichen. Damit mdchte ich Indie-
Entwicklern eine konkrete Hilfe an die Hand geben und weiter auf das
vielversprechende Thema der prozeduralen Modellierung aufmerksam machen.

61

Literatur

[1] Statista. "DIGITAL & TRENDS Indie gaming." Zugriff am: 30. September 2025. [Online.]
Verfligbar: https://www.statista.com/study/188180/indie-gaming/

[2] Gamalytic. "Publisher class definition." Zugriff am: 29. September 2025. [Online.] Verfligbar:
https://gamalytic.com/about

[3] Video Game Insights. "The Big Game Engine Report of 2025." Zugriff am: 30. September
2025. [Online.] Verfligbar: https://app.sensortower.com/vgi/assets/reports/The_Big_Game_
Engines_Report_of_2025.pdf

[4] E. Folmer, "Component Based Game Development - A Solution to Escalating Costs and
Expanding Deadlines?," in Component-Based Software Engineering (Lecture Notes in
Computer Science 4608), D. Hutchison et al., Hg., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, S. 66-73.

[5] C.-H. Kung und K.-C. Liang, Exploring the Usability and Future Development of AI-Generated
3D Models in CAD Workflows and the Metaverse Based on 3D Model Standards, 2025.

[6] GMU MPI Saarbriicken, Geometric Modeling Based on Polygonal Meshes.

[7] S. Mlnster et al., "3D Modeling," in Handbook of Digital 3D Reconstruction of Historical
Architecture (Synthesis Lectures on Engineers, Technology, & Society 28), S. Minster et al.,
Hg., Cham: Springer Nature Switzerland, 2024, S. 107-128.

[8] M. Gai und G. Wang, Artistic Low Poly rendering for images (32), 2016.

[9] D.-M. Lee. "Blender 3D as a Catalyst for Indie Game Development."”

[10] Autodesk Inc. "Maya Preisibersicht." Zugriff am: 23. November 2025. [Online.] Verfiligbar:
https://www.autodesk.com/de/products/maya/overview

[11] Blender Authors. "Blender API Overview." Zugriff am: 29. September 2025. [Online.]
Verfligbar: https://docs.blender.org/api/current/info_overview.html#

[12] Blender. "Add-on Tutorial." Zugriff am: 29. September 2025. [Online.] Verfluigbar: https://
docs.blender.org/manual/en/latest/advanced/scripting/addon_ tutorial.html

[13] Nathaniel Rupsis, How do I contribute? — Blender Conference 2024. [Online]. Verfligbar
unter: https://youtu.be/AAOyToizw_M?si=jvyK7alCk_JInFuoz&t=2288

[14] Blender. "Node Wrangler." Zugriff am: 16. Oktober 2025. [Online.] Verflgbar: https://
docs.blender.org/manual/en/latest/addons/node/node_wrangler.html

[15] Noor Shaker, Julian Togelius, Mark J. Nelson, Procedural Content Generation in Games.
Gewerbestrasse 11, 6330 Cham, Switzerland: Springer International Publishing Switzerland,
2017.

[16] J. Togelius et al., Procedural Content Generation: Goals, Challenges and Actionable Steps.
Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, 2013.

[17] Gillian Smith, Procedural Content Generation An Overview. [Online]. Verfugbar unter: https://
www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter40_Procedural_Content_Generation_
An_Overview.pdf

[18] R. M. Smelik, T. Tutenel, R. Bidarra und B. Benes, A Survey on Procedural Modelling for Virtual
Worlds (33), 2014.

[19] A. L. Przemyslaw Prusinkiewicz, The Algorithmic Beauty of Plants.

[20] P. Mlller, P. Wonka, S. Haegler, A. Ulmer und L. van Gool, "Procedural modeling of buildings,"
ACM Trans. Graph., 1g. 25, Nr. 3, S. 614-623, 2006.

[21] Lars Krecklau and Leif Kobbelt, Interactive Modeling by Procedural High-Level Primitives.

[22] Y. Rabii und M. Cook, "Why Oatmeal is Cheap: Kolmogorov Complexity and Procedural
Generation," in Proceedings of the 18th International Conference on the Foundations of Digital
Games, Lisbon Portugal, P. Lopes, F. Luz, A. Liapis und H. Engstrém, Hg., 04122023, S. 1-7,
doi: 10.1145/3582437.3582484.

[23] Blender. "Attributes." Zugriff am: 15. November 2025. [Online.] Verfligbar: https://
docs.blender.org/manual/en/latest/modeling/geometry_nodes/attributes_reference.html
[24] Blender. "Blender Asset-Library-System." Zugriff am: 13. Oktober 2025. [Online.] Verfugbar:
https://docs.blender.org/manual/en/latest/files/asset_libraries/introduction.html#what-is-an-

asset-library

[25] ALLTHEWORKS11. "Easy Geometry Nodes - Low-poly Stylized Trees BLENDER 3.0." Zugriff
am: 14. Oktober 2025. [Online.] Verfugbar: https://www.youtube.com/watch?v=
G4VEHi3dI6w&

62

Abbildungsverzeichnis

Abbildung 1: Marktanteil von auf Steam verdffentlichten Indie-Spielen von 2018 bis 2024 (Statista). 2
Abbildung 2: Game Engine Mix nach verkauften EiNheiten [3].euuvuueiiiiiiiiiieiiiiie et eee et e e eenes 3
Abbildung 3: Entwicklung der veroéffentlichten Indie-Spiele mit tiber einer Million Verkdufen von 2006 bis
2024, getrennt nach 2D- und 3D-Titeln. Die Darstellung zeigt die zunehmende Bedeutung von 3D-

Produktionen im Indie-Sektor (€igene DarstellUNg).ceueuveiiiiiiiiiieieiieeieie e et eee et e eeeeesesansanees 4
Abbildung 4: Polygonaler Wiirfel mit visualisiertem Vertex, Edge und Face (eigene Darstellung). 5
Abbildung 5: Mit LPTK erstelltes Terrain (eigene Darstellung).ccoeue oot 8
Abbildung 6: Sunburst-Chart Darstellung der " Top 100 paid Assets', 30.09.2025 (eigene Darstellung)

QUELLE ABI DALEIN TN A ..ottt e ettt ee ettt e s eaeaasnessaesnessaesnesesesnesesesnesesesneneaesnenesesnenennses 9

Abbildung 7: Google Trends Such-Interesse Populédrer 3D-Programme, Blender Hervorgehoben.
Datenquelle: Google Trends, Suchbegriffe im Zeitraum 01.01.2020 - 24.10.2025 (eigene Darstellung)..... 10

Abbildung 8, Prozeduraler Shader flir Vornoi-basierte Glasmalerei (eigene Darstellung)..............cccoceunen. 12
Abbildung 9: Beispielhafte Darstellung des ,ProceduralTerrain‘ Systems des LPTK mit visualisierten
Boolean-Meshes (€iGNe€ DArstellUNG).c.uueniiiiiiiiie et ee e e e st st s e easaeasansanstsansasananns 15
Abbildung 10: Beispielhafter Node Tree (eigene Darstellung)...........c.ccuueuieuiiiiiiiiiiiiieiieeieeniieiiseneeeennenns 17
Abbildung 11: Visualisierung des Effekts der in Abbildung 10 gezeigten Set Position Node auf einem

Wiirfel. Grauer Wiirfel vor, oranger nach der Set Position Operation (eigene Darstellung). 17
Abbildung 12: Spreadsheet-Ubersicht der Vertex Domain eines Wiirfels (eigene Darstellung). 18
Abbildung 13: Ubersicht der fiir das LPTK relevanten Datentypen (eigene Darstellung).cccuvv...... 18
Abbildung 14: Field-basierte Attributzuweisung (eigene Darstellung).c.ccoveeeieeienieiiiiiiiiiiieeieaenns 19
Abbildung 15: Darstellung der Vertex Domain des Spreadsheets nach der 'HighPoints' Zuweisung (eigene

I 1S (=10 o= TP PPNt 19
Abbildung 16: Hervorhebung der Vertices mit zugewiesenem 'HighPoints'-Wert durch Rote Kugeln (eigene
DArStEIUUNG). .c..eunenieie ettt et et et s et e e e et ea st st st sansasaasansanstnstnsansansansnnanssnsensensensanenns 19
Abbildung 17: Geometry Nodes Oberflache in Blender 4.5 am Beispiel des ,,Palisade1“-Node Trees
(€I8ENE DAISEEIIUNG). ..ceueeeeeieee ettt ettt et et et et s ea et e e s aa st et s eaaeannaansannsanneanaannen 20
Abbildung 18: What kind of work do you do with Blender? (Datenquelle: 2024 Blender User Survey) (eigene
DArSTEIIUNG). . eeneeee ettt ettt et e et et e e s ea et e e s aaa et ean s aaasanneansasasannaansanneanneeneannes 22
Abbildung 19: Asset Browser Ul der LPTK Asset-Library (eigene Darstellung).ccceeueenieniiiiiiinienennenns 23
Abbildung 20:Rendering eines ,FunkyTrees‘ auf einem ,MeshTerrain‘ (eigene Darstellung). 25
Abbildung 21: Node-Tree des ,FunkyTree-Systems mit visualisierten Verarbeitungsschritten (eigene
DArStEIUUNG). ..c..eueneeieeie ettt et et et et e a e e et ea st sta s e sansaneasansanstnstnsansansansnssnssnsensensansanenns 26
Abbildung 22: Ausschnitt vom ,FunkyTree‘-Setup mit Fokus auf der Group Input Node und der ,Trunk‘-
Gruppe (€iENE DAISEEIIUNG). ..cc..euneeteii ettt et et e et et et e et et e e et s aaeaneeansansaneanns 27
Abbildung 23: Group Sockets der "FunkyTree" Group Input-Node, einseh- und konfigurierbar im Node-
Backend (€iENE€ DArstellUNG).ccuueueieeiieie ettt et e et et e e et et s ea s e eensenneenseensananen 27
Abbildung 24: Geometry Nodes Modlifier des ,FunkyTree‘-Systems (eigene Darstellung). 28
Abbildung 25: 'CUIVE t0 PlaN€'-GrUPPEcc.eeuueeueieeieieete ettt e et et etie et s et e te et e ea et eansessanaeneenanes 29
Abbildung 26: Darstellung des ,StonePath‘-Systems auf einem ,MeshTerrain‘ (eigene Darstellung)........... 29
Abbildung 27: Bimodale SChaltUNGSIOZIKcueuieniiiiiiieie ettt ee e e st st s e saseae e ensansansansananns 30
Abbildung 28: Darstellung der Pfadgenerierung in drei SCHIttEN.........cvuiuiuiiiiiiiiiiiiie e eaeans 31
Abbildung 29: Vereinfachte vertikale Darstellung des ,ProceduralTerrain‘-Setups (eigene Darstellung). ...32
Abbildung 30: Beispiel Rendering eines ,ProceduralTerrain‘ (eigene Darstellung)............ccccoeeoveiveieeennenn. 32
Abbildung 31: ,ProceduralTerrain‘ Basis-Mesh mit visualisierten Vertices und deren Z-Positionen (eigene
DArSTEIIUNG). «.ceneeee ettt ettt e e ettt e et et et s ea et e e s et e aaeansaaaeanneansasneannaansanneanneenaannes 33
Abbildung 32: 'BaseMesh & Booleans'- und 'Merge & Triangulation'-Gruppe.........ccceeeueeeneeeirenneinneennennne. 33
Abbildung 33: 'Material Manager'- Uund 'POLSH'-GIrUPPEccuuveuiiieiiieiieeiie et ete et ete e e e eaaenanes 34
Abbildung 34: 'Water GENErationN=GrUDPE.......cuueuii it eie e te e e rte et eaeenstnstnstsaasassassnstnstnstnsensanenns 35
Abbildung 35: ProceduralTerrain mit visualisierten Punktwolken (rot) und hervorgehobenen Wasser-
Volumen (blau) (€i8ENE DArStEUUNG).c.ccuvenienieiiiii ettt ee e ee st st e e easaeasanstnsansansansansannn 35
Abbildung 36: ,ProceduralTerrain®in drei SCAIITTENvuiu it eae e eeee s e e e eanaans 37
Abbildung 37: Mesh-Terrain auf Basis zweier einfacher Box-Geometrien (eigene Darstellung). 38

63

Abbildung 38: ,MeshTerrain‘ auf durch sculpting definierter Basisgeometrie (eigene Darstellung)............ 38
Abbildung 39: Visualisierung von Weightpainting auf niedrig aufgeloster Plane. Die Roten Regionen zeigen
Vertices mit Weight 1.0, die blauen mit weight 0.0. Aufgrund der niedrigen Auflésung wirkt sich der Weight-

Paint auf die umliegenden Faces aus (€igene Darstellung).ccocvuiuiiuieiiiiiiiiiiiiiieiieeeeir e eieeneanennenns 39
Abbildung 40: Darstellung eines ,ScatterCuves‘-Systems auf welches drei "Haare" (Kurven) platziert
wurden, welche mithilfe der Hair Sculpting Brushes angepasst werden kénnen (eigene Darstellung)....... 40
Abbildung 41: Nutzeroberflidche des LPTK (eigene Darstellung).coueueniiniiiiiiiiiiiiiieiieeieieeeeeeans 45
Abbildung 42: Beispielhafte Darstellung einer Kollektionsstruktur im Outliner (eigene Darstellung). 48
Abbildung 43: ,Collection Exporter‘-Panel innerhalb des LPTK Add-ons (eigene Darstellung). 48
Abbildung 44: Gegenlberstellung zweier gleicher Tannen, links ohne Farbverlauf, rechts mit Farbverlauf
(€IGENE DAISTEIIUNG). ..eeneeeeeeee ittt et ettt e st st st st sasaseasansansanstnsansansananssnstnsensansansanenns 50
Abbildung 45: Nutzer-Evaluation, Selbsteinschétzung relevanter Vorerfahrung (eigene Darstellung)........ 53
Abbildung 46: Quantitativer Vergleich der Nutzererfahrung des LPTK (eigene Darstellung). 54
Abbildung 47: Zeigt das Ergebniss der Modellierung der Referenzskizze eines Test-Nutzers mit dem LPTK
(€I8ENE DAISEEIIUNG). ..ceueeeeeiee ettt et et et e et e te et e ea et e e s aa et et sesaeannaansannsanneenaannnen 55
Abbildung 48:Zeigt das Ergebnis der Modellierung der Referenzskizze eines Test-Nutzers ohne das LPTK
(€I8ENE DAISEEIIUNG). ..ceueeeeeeeee ettt et et et e et e te et s et et et s ea et et s esnsannaansanneaneenaannes 55
Bildquellen

Abbildung 1: Marktanteil von auf Steam veréffentlichten Indie-Spielen von 2018 bis 2024 (Statista).
Quelle: https://www.statista.com/statistics/1535485/steamsteam-annual-indie-game-share/

Abgerufen am: 30.09.2025

Abbildung 2: Game Engine Mix nach verkauften Einheiten (Video Game Insights).
QueIIe: https://app.sensortower.com/vgi/assets/reports/VGI_Global_Indie_Games_Market_Report_2024.pdf

Abgerufen am: 30.09.2025

Alle weiteren Abbildungen sind eigene Darstellungen.

64

Anhang

A1 Ubersicht iiber aller Thumbnails der verfligbaren Node
Setups des LPTK

1/2

65

A1 Ubersicht Giber aller Thumbnails der verfiigbaren
prozeduralen Assets des LPTK

2/2

66

A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation
Renderings aller Ergebnisse der Nutzerevaluation.

Links nur Blender, Rechts mit LPTK
1/2

A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation

Renderings aller Ergebnisse der Nutzerevaluation.

Links nur Blender, Rechts mit LPTK
2/2

68

A3 Kategorisierung von Indie-Spielen mit mehr als
einer Millionen Verkaufe

Die Ausgangsquelle wurde zur Erstellung von Abbildung 3 handisch in

Spiele mit 2D und 3D-Darstellungen unterteilt. Aufgrund des Umfangs -
der Analyse wurde diese nicht ausgedruckt, kann aber online "
abgerufen werden E

Auswertung: https://joshuabattenfeld.com/LPTK/THESIS/A3
Als Ausgangsquelle diente: https://en.wikipedia.org/wiki/Indie_game
Abgerufen am: 18.11.2025

A4 Kategorisierung der ,Top 100 Paid Assets” des Unity
Asset Stores

Zur Erstellung von Abbildung 6 wurde die analysiert und die einzelnen
Assets handisch kategorisiert. Aufgrund des Umfangs der Analyse
wurde diese nicht ausgedruckt, kann aber online abgerufen werden

Auswertung: https://joshuabattenfeld.com/LPTK/THESIS/A4
Als Ausgangsquelle diente: https://assetstore.unity.com/top-assets/top-paid
Abgerufen am: 30.09.2025

A5 Ergebnisse der Nutzerevaluation, Google-Forms
Ergebnisse als csv: https://joshuabattenfeld.com/LPTK/THESIS/A5

A6 Ergebnisse der Nutzerevaluation, Kurzinterviews

Stichpunktartige Zusammenfassung:
https://joshuabattenfeld.com/LPTK/THESIS/A6

A7 Referenzskizze der Nutzerevaluation A7
Skizze: https://joshuabattenfeld.com/LPTK/THESIS/A7 E

	1. Einleitung
	2. Theoretischer Hintergrund
	2.1 Indie-Spielentwicklung
	2.2 3D-Modelle im Kontext der Spieleentwicklung
	2.2.1 Polygonale Darstellung von 3D-Modellen
	2.2.2 Beschaffung von 3D-Modellen

	2.3 Low-Poly Artstyle
	2.3.1 Gründe für Low-Poly im LPTK

	2.4 Blender im Indie-Spielentwicklungs Kontext
	2.4.1 Blender Add-ons

	2.5 Procedural Content Generation
	2.5.1 Prozedurale Modellierung
	2.5.2 Vor- und Nachteile prozeduraler Systeme
	2.5.3 Automatic Generation versus Mixed Authorship
	2.5.4 Moderne Node-Based-Tools
	2.5.4.1 Houdini als Industriestandard
	2.5.4.2 Spezialisierte Lösungen

	2.5.5 Blender Geometry Nodes
	2.5.5.1 Das Attribut-Konzept
	2.5.5.2 Das Feld-Konzept (Fields)
	2.5.5.3 Entwicklung der Geometry Nodes und Arbeitsumgebung

	3. Methodik
	3.1 Anforderungen an die entwickelte Asset-Bibliothek
	3.2 Auswahl der Werkzeuge
	3.2.1 Blender und Geometry Nodes als prozedurale Basis
	3.2.2 Add-on statt Blenders integrierter Asset-Library

	4. Umsetzung
	4.1 Entwicklung der Geometry Node Trees
	4.1.1 Erste Experimente
	4.1.2 Parametrisierung anhand des ‚FunkyTree‘-Systems
	4.1.3 Kurvenbasierte Pfadgenerieung
	4.1.3.1 ‚Curve to Plane‘
	4.1.3.2 Instanziierung und Projektion mit ‚Stones on Surface‘
	4.1.3.3 ‚Material Manager‘
	4.1.3.4 ‚Default Stone Extrusion and Deformation‘

	4.1.4 ‚ProceduralTerrain‘
	4.1.4.1 Basis-Mesh & Booleans
	4.1.4.2 ‚Merge & Triangulation‘
	4.1.4.3 ‚Material Manager‘
	4.1.4.4 ‚Water Generation‘
	4.1.4.5 ‚Polish ‘

	4.1.5 Erweiterung zum ‚MeshTerrain‘
	4.1.6 Scattering-Systeme
	4.1.6.1 Herausforderungen eines Weight-Paint-basierten Ansatzes
	4.1.6.2 UV-basiertes Curve-Scattering (LPTK-Ansatz)

	4.2 Entwicklung des Add-ons in Python
	4.2.1 Einlesen der Node Trees
	4.2.2 ‚Node-Types‘
	4.2.3 ‚Node-Spawning‘
	4.2.4 Nutzeroberfläche
	4.2.4.1 Implementierung der Oberfläche anhand des Asset Panels

	4.2.5 Integration des Game-Enginge-Syncs
	4.2.5.1 Collection Exporter
	4.2.5.2 Implementierung der Export-Logik
	4.2.5.3 ‚Vertex Color Baking Automation‘

	4.2.6 Entwicklung des ‚Thumbnail-Renderers‘

	5. Empirische Evaluation
	5.1 Aufbau und Methodik
	5.2 Quantitative Ergebnisse
	5.3 Qualitative Ergebnisse

	6. Diskussion
	6.1 LPTK als entwickelter Ansatz
	6.2 Blender und Geometry Nodes als Basis des LPTK
	6.2.1 Blender Python API zur Add-on Entwicklung

	7. Fazit und Ausblick
	Literatur
	Abbildungsverzeichnis
	Bildquellen
	Anhang
	A1 Übersicht über aller Thumbnails der verfügbaren Node Setups des LPTK
	A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation
	A3 Kategorisierung von Indie-Spielen mit mehr als einer Millionen Verkäufe
	A4 Kategorisierung der „Top 100 Paid Assets” des Unity Asset Stores
	A5 Ergebnisse der Nutzerevaluation, Google-Forms
	A6 Ergebnisse der Nutzerevaluation, Kurzinterviews
	A7 Referenzskizze der Nutzerevaluation

