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Kurzfassung 

Die Erstellung von 3D-Modellen stellt in der Spieleentwicklung einen erheblichen 
Produktionsaufwand dar. Prozedurale Generierung verspricht hier Entlastung, 
indem sie die Modellierung über parametrisierbare, teil-automatisierte Systeme 
unterstützt. 

Moderne 3D-Software bietet zunehmend Schnittstellen zur prozeduralen 
Inhaltserstellung. Dazu zählt auch das populäre Open-Source-Programm Blender, 
das seit 2021 mit den Geometry Nodes eine nodebasierte Oberfläche zur nicht-
destruktiven, parametrischen Generierung von 3D-Inhalten bereitstellt. 

In dieser Arbeit werden die Herausforderungen, Potenziale und Limitationen der 
Entwicklung und des Einsatzes einer prozeduralen Low-Poly-Asset-Bibliothek mit 
Blender Geometry Nodes untersucht.  

Hierzu wird ein als Blender Add-on implementiertes Toolkit entwickelt, das aus 
modularen Geometry Node Setups besteht und die effiziente Erstellung stilisierter 
Low-Poly-Welten in einem mittelalterlichen Setting ermöglicht. Anschließend wird 
das System im Rahmen einer Nutzerevaluation getestet und sowohl der 
prozedurale Ansatz als auch die konkrete Implementierung kritisch diskutiert. 

Die Arbeit schließt mit der Erkenntnis, dass prozedurale Asset-Bibliotheken in der 
richtigen Umsetzung und Game-Engine naher Implementation einen echten 
Mehrwert liefern können. Insgesamt verdeutlicht die Arbeit das bislang 
unterschätzte Potenzial zugänglicher prozeduraler Asset-Bibliotheken, 
insbesondere für Indie-Entwickler. 

Abstract 

The creation of 3D models represents a considerable production effort in game 
development. Procedural generation promises to ease this burden by supporting 
modeling via parameterizable, semi-automated systems. 

Modern 3D software increasingly offers interfaces for procedural content creation. 
This includes the popular open-source program Blender, which since 2021 has 
provided a node-based interface for non-destructive, parametric generation of 3D 
content with its Geometry Nodes. 

This thesis examines the challenges, potential, and limitations of developing and 
using a procedural low-poly asset library with Blender Geometry Nodes.  

To this end, a toolkit implemented as a Blender add-on is developed, consisting 
of modular Geometry Node setups that enable the efficient creation of stylized 
low-poly worlds in a medieval setting. The system is then tested in a user 
evaluation, and both the procedural approach and the concrete implementation 
are critically discussed. 

The thesis concludes with the finding that procedural asset libraries can deliver 
added value when implemented correctly and closely integrated with the game 
engine. Overall, the thesis highlights the previously underestimated potential of 
accessible procedural asset libraries, especially for indie developers. 
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1. Einleitung 
Diese Arbeit fokussiert sich auf die Erforschung der Blender Geometry Nodes als 
System zur Erstellung einer prozeduralen Asset-Bibliothek für die 
Spieleentwicklung. 

Im Rahmen dieser Arbeit wurde eine prozedurale Asset-Bibliothek für Blender 
entwickelt, die als Add-on realisiert ist und auf einer Reihe von Geometry Node 
Setups basiert. Das resultierende System, das Low-Poly-Tool-Kit (LPTK), 
ermöglicht die effiziente Erstellung stilisierter Low-Poly-Umgebungen in einem 
mittelalterlichen Setting. 
Zentrales Ziel des Projekts war es, eine benutzerfreundliche und erweiterbare 
Oberfläche zu schaffen, die es Nutzern erlaubt, bereits mit grundlegenden 3D-
Kenntnissen komplexe Szenen zu erstellen, zu modifizieren und in gängige 
Game-Engines zu exportieren. 

Das LPTK wandelt einfache geometrische Formen oder Kurven in konsistente, 
optisch ansprechende 3D-Modelle um. Damit adressiert es eine zentrale 
Herausforderung der Spieleentwicklung: die Balance zwischen künstlerischer 
Qualität, Produktionsgeschwindigkeit und technischer Flexibilität.  

Insbesondere in der Prototypen-Entwicklung werden häufig abstrakte 
Platzhaltermodelle verwendet, die zwar schnelle Iterationen ermöglichen, jedoch 
die visuelle Aussagekraft einschränken. Das LPTK setzt an dieser Stelle an, indem 
es die Effizienz von Greyboxing mit den gestalterischen Möglichkeiten 
prozeduraler Systeme verbindet. Somit können bereits in frühen 
Entwicklungsphasen visuell ansprechende Szenen erstellt werden, ohne den 
üblichen Mehraufwand klassischer Modellierung in Kauf nehmen zu müssen. 

Darüber hinaus zielt das Toolkit darauf ab, die Einstiegshürde für Solo-Entwickler 
und kleine Teams zu reduzieren. Prozedurale Systeme übernehmen einen Teil der 
technischen Komplexität, sodass sich Entwickler oder Artists stärker auf die 
inhaltliche Gestaltung konzentrieren können, anstatt der technischen Umsetzung.  

Ausgehend von der Forschungsfrage 

 
„Welche Herausforderungen, Potenziale und Limitationen ergeben sich bei der 
Entwicklung einer prozeduralen Asset-Bibliothek auf Basis von Geometry Nodes 
und einer Add-on-basierten Interaktionsoberfläche?“ 

 
umfasst diese Arbeit drei zentrale Untersuchungsbereiche: 

1. Das Potenzial prozeduraler Assets für eine effiziente und konsistente 
Spielweltgestaltung. 

2. Die technische Umsetzung prozeduraler Assets mithilfe von Blender 
Geometry Nodes. 

3. Die Integration der entwickelten Systeme in ein benutzerfreundliches 
Blender-Add-on. 
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2. Theoretischer Hintergrund 
Bevor die konkrete Umsetzung der prozeduralen Asset-Bibliothek besprochen 
werden kann, müssen einige Grundlagen geklärt werden. In Kapitel 2 werden 
diese besprochen. Wobei zunächst das geplante Einsatzgebiet des LPTK, also 
(Indie)-Spieleentwicklung dann 3D-Modelle in diesem Kontext, der Low-Poly-
Artstyle, Blender als Software und anschließend Prozedurale Ansätze, inklusive 
der Grundlagen von Blenders Geometry Nodes, besprochen werden. 

2.1 Indie-Spielentwicklung 
Indie-Spiele haben in den vergangenen Jahren erheblich an Bedeutung 
gewonnen und stellen den Großteil der jährlichen Spieleveröffentlichungen und 
im Jahr 2024 etwa die Hälfte des jährlichen Umsatzes durch Spielverkäufe über 
die Plattform Steam dar1. Unter „Indie“ versteht man in der Regel Produktionen 
kleinerer Studios oder Einzelentwickler, die ohne die finanzielle und 
organisatorische Unterstützung großer Publisher realisiert werden. Typisch für 
dieses Segment sind niedrigere Budgets, kleinere Teams und ein hohes Maß an 
kreativer Freiheit. 

Allerdings ist der Begriff „Indie“ nicht eindeutig definiert. Manche Definitionen 
beziehen sich auf die Finanzierungsstruktur (keine Unterstützung durch 
Publisher), andere auf die Teamgröße oder die Unabhängigkeit in kreativen 
Entscheidungen. Entsprechend unterscheiden sich auch die zugrunde liegenden 
Statistiken zu Indie-Produktionen je nach Quelle und Erhebungsmethode. 
Während einige Studien ausschließlich die Finanzierungskriterien heranziehen, 
erfassen andere alle Produktionen außerhalb klassischer AAA-Studios. Der Begriff 
der AAA-, AA- und Indie-Studios ist hierbei aber immer fließend zu betrachten 
und nicht eindeutig greifbar, Weshalb Statistiken in diesem Bereich sich auch 
nicht immer auf die gleichen Spiele/Studios beziehen2. Unabhängig von der 
genauen Definition gilt: Indie-Spiele stellen ein zentrales Segment der Branche 

 
1 [1]. 
2 [2]. 

Abbildung 1: Marktanteil von auf Steam veröffentlichten Indie-Spielen von 2018 bis 2024 (Statista). 



 
 

3 
 

dar. 2024 waren zum Beispiel 98,9% aller Veröffentlichungen auf Steam Indie-
Titel (Abbildung 1).  

Aufgrund der meist kleinen Teamgrößen und fehlender Spezialisten entscheiden 
sich Indie-Entwickler deutlich häufiger für bestehende Softwarelösungen zur 
Spieleentwicklung, anstatt eigene technische Grundlagen wie Engines oder 
Frameworks zu entwickeln. Ein Blick auf entsprechende Branchenstatistiken 
zeigt, dass sich insbesondere kleinere Studios mit vergleichsweise geringen 
Verkaufszahlen (Abbildung 2) überproportional häufig für Unity als Game-Engine 
entscheiden.  

Unity gilt damit im Indie-Bereich als besonders relevante Entwicklungsumgebung 
und prägt maßgeblich die Produktionsweise kleiner Teams. 

 

Abbildung 2: Game Engine Mix nach verkauften Einheiten [3]. 
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2.2 3D-Modelle im Kontext der Spieleentwicklung 
Im Kontext der Spieleentwicklung stellt die Erstellung visueller Inhalte in den 
meisten Fällen einen der größten Kostenfaktoren innerhalb der 
Produktionspipeline dar3. Seit Anfang der 2000er-Jahre dominieren 3D-Spiele 
den Markt, insbesondere bei den großen Produktionen im AA- und AAA-Segment.  

Durch frei verfügbare Engines wie Unity, kostenlose Modellierungssoftware wie 
Blender und einen stetig wachsenden Asset-Markt können inzwischen jedoch 
auch Indie-Studios zunehmend 3D-Spiele realisieren. Abbildung 3 zeigt diesen 
Trend auf Basis der Wikipedia-Liste „Indie games surpassing a million sales“, die 
für diese Arbeit in 2D- und 3D-Titel unterteilt wurde (Anhang A3).  

Diese Entwicklung unterstreicht den wirtschaftlichen Stellenwert von 3D-Inhalten 
auch außerhalb des AAA-Bereichs. Modellierung, UV-Mapping, Texturierung, 
sowie die technische Aufbereitung für Echtzeit-Engines erfordern spezialisiertes 
Know-how und sind zeitintensiv. 

Die Kosten von 3D-Modellen im, variieren je nach Genre und Art-Style stark von 
Spiel zu Spiel, stellen jedoch im Normalfall neben den Code und Game-Design 
einen der größten Kostenpunkte der 3D-Spieleentwicklung dar4. 

  

 
3 [4, S. 1]. 
4 [5, S. 783]. 

Abbildung 3: Entwicklung der veröffentlichten Indie-Spiele mit über einer Million Verkäufen von 2006 bis 2024, getrennt nach 
2D- und 3D-Titeln. Die Darstellung zeigt die zunehmende Bedeutung von 3D-Produktionen im Indie-Sektor (eigene Darstellung). 
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2.2.1 Polygonale Darstellung von 3D-Modellen 
Es gibt verschiedene Methoden zur Repräsentation von dreidimensionalen 
Objekten. Im Kontext der Spieleentwicklung und Echtzeit-Computergrafik haben 
sich polygonale Modelle als Standard etabliert5.  

Polygonale Modelle bestehen aus sogenannten Meshes, also Polygonnetzen, 
welche die Oberfläche eines Objekts approximieren. 

 

Ein solches Mesh setzt sich aus folgenden 
Grundelementen zusammen, welche in 
Abbildung 3 visualisiert sind: 

• Eckpunkten (Vertices), rot dargestellt 
a. Punkte im dreidimensionalen 

Raum 
• Kanten (Edges), grün dargestellt 

a. Verbindungen zwischen zwei 
Vertices 

• Flächen (Faces), blau dargestellt 
a. geschlossene Flächen, die durch 

drei oder mehr Vertices gebildet 
werden  

 

In modernen Produktionspipelines werden 
polygonale Modelle um weitere Komponenten 
wie Texturen, UV-Maps, Materialdefinitionen 
sowie Rigging- und Animationsdaten ergänzt. 

Diese kombinieren sich zu vollständigen 3D-Assets, 
die in Game-Engines wie Unity oder Unreal Engine 
importiert und in Echtzeit dargestellt werden können. Im Rahmen der Arbeit 
beziehe ich mich im Kontext von 3D-Modellen oder 3D-Assets grundsätzlich auf 
polygonale Modelle.  

Im folgenden Kapitel wird die Beschaffung solcher Modelle innerhalb der 
Spieleproduktion erläutert. 

  

 
5 [6, S. 1]. 

Abbildung 4: Polygonaler Würfel mit 
visualisiertem Vertex, Edge und Face 
(eigene Darstellung). 
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2.2.2 Beschaffung von 3D-Modellen 
Grundsätzlich gibt es zur Erstellung der benötigten 3D-Assets verschiedene 
Methoden, mit verschiedenen Vor- und Nachteilen.  

Im Folgenden werden die wichtigsten Ansätze kurz beschrieben: 

• Händische Modellierung  

Die klassische, manuelle Erstellung von Modellen in 3D-Software wie Blender, 
Maya oder 3ds Max. Sie bietet maximale Kontrolle über Form, Stil und technische 
Umsetzung, ist jedoch zeitaufwendig und entsprechend kostenintensiv6. 
Innerhalb dieser Kategorie existieren zahlreiche Unterformen, welche für 
spezielle Modellierung oder basierend auf Präferenz des Artists gewählt werden. 
Darunter beispielsweise: 

o Polygonale Modellierung 

Modelle werden durch Manipulation einzelner Polygone aufgebaut, meist durch 
manuelle Extrusion, Skalierung und Verschiebung von Faces, Edges und Vertices. 

o Digitales Sculpting 

Eine freiere, skulpturähnliche Methode, bei der Formen aus einer Basisgeometrie 
mithilfe von Werkzeugen zum Schieben, ziehen, glätten, greifen etc. erstellt 
werden. Wird häufig für organische Objekte wie menschliche Körper verwendet.  

• KI-gestützte Modellgenerierung  

KI-basierte Verfahren nutzen Machine-Learning-Modelle zur Erzeugung von 
Geometrie oder Texturen. Aktuelle Text-to-3D- und Image-to-3D-Ansätze wie 
Meshy, Rodin oder das Open-Source-Projekt Hunyuan-3D erzielen bereits 
beeindruckende Ergebnisse, weisen aber nach wie vor deutliche Schwächen in 
Bereichen wie Topologie7, Retopologie und UV-Mapping auf und sind somit 
schwer in professionelle Workflows zu integrieren8. 
Entsprechend spielen KI-generierte Modelle derzeit noch eine untergeordnete 
Rolle in professionellen Workflows, werden aber zunehmend als unterstützende 
Werkzeuge eingesetzt. 

• Prozedurale Modellierung 

Beschreibt die regelbasierte, algorithmische Generierung von Geometrie. 
Dieser Ansatz steht im Fokus dieser Arbeit und wird in Kapitel 2.5 ausführlich 
behandelt. 

 

 

 
6 [5, S. 783]. 
7 Topologie bezieht sich bei Polygonalen 3D-Modellen auf die explizite Anordnung der 
Geometrie. Grundsätzlich ist hierbei das Ziel mit möglichst geringer Polygonanzahl einen 
möglichst hohen Detailgrad zu erzielen, also die verwendete Geometrie möglichst 
effizient zu nutzen. 
8 [5, S. 801]. 
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• Photogrammmetrie: 

Bezieht sich im 3D-Kontext auf die Übertragung von Objekten der physischen 
Welt in die digitale mithilfe von Bildern oder Scans und Photogrammetry 
Software. Diese Technik ist besonders relevant für die Erzeugung realistischer 
Assets. 

• Hybride Workflows:  

Innerhalb moderner Produktionspipeline werden häufig verschiedene Verfahren 
miteinander kombiniert. Beispielsweise durch die Generierung von Basismodellen 
mithilfe von KI oder prozedurale Systeme und anschließende Händische 
Überarbeitung9 . 

 

Während es keine genauen Zahlen bzgl. der Nutzung dieser Methoden in der 
Videospiel-Industrie gibt, dominiert in der Praxis laut verschiedenen Quellen und 
aus eigener Branchenerfahrung weiterhin die manuelle Modellierung, da sie 
maximale kreative Kontrolle und unmittelbares Feedback erlaubt10. 

Wichtig zu erwähnen sind auch Asset-Packs, die zwar keine Form der Erstellung, 
aber dennoch eine zentrale Möglichkeit zur Beschaffung von 3D-Modellen in der 
Spieleentwicklung darstellen. 
Gerade kleinere Produktionen, die über keine oder wenige dedizierte Artists 
verfügen, greifen häufig auf Sammlungen vorgefertigter Assets zurück, die 
thematisch und stilistisch aufeinander abgestimmt sind. 
Diese Vorgehensweise spart Zeit und Kosten, reduziert jedoch die gestalterische 
Freiheit und Individualität der Projekte. Das Vermischen verschiedener Asset-
Packs (Kitbashing) kann dabei ebenfalls schnell zu stilistischen Inkonsistenzen 
führen. 

Es existieren zahlreiche Wege, 3D-Modelle zu erstellen oder zu beschaffen. 
Unabhängig von der gewählten Methode können sich die resultierenden Modelle 
in Stil, Detailgrad und technischer Umsetzung stark voneinander unterscheiden. 
Im folgenden Kapitel wird die Low-Poly-Ästhetik behandelt, die einen 
spezifischen, stark stilisierten Ansatz der 3D-Modellierung beschreibt.  

 
9 [7, S. 120]. 
10 [7, S. 118]. 
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2.3 Low-Poly Artstyle 
Unter Low-Poly versteht man im Kern die Verwendung von 3D-Modellen mit 
geringer Polygonanzahl. Dabei lassen sich jedoch zwei unterschiedliche 
Bedeutungen unterscheiden: 

1. Technisches Low-Poly 
In der 3D-Grafik werden Modelle häufig in vereinfachter Form eingesetzt, 
um Rechenleistung zu sparen und eine flüssige Darstellung zu 
gewährleisten. Beispielsweise bei der Verwendung sogenannter Level of 
Detail (LOD)-Modelle11, bei denen mit zunehmender Entfernung zum 
Betrachter ein Objekt durch eine weniger detaillierte Version ersetzt wird. 
Solche Low-Poly-Modelle entstehen also aus Gründen der Optimierung und 
dienen primär der Performance-Steigerung. 

2. Stilistisches Low-Poly (Artstyle)  
Davon abzugrenzen ist der bewusste Einsatz von Low-Poly-Formen als 
künstlerische Stilrichtung. Dieser Ansatz hat seine Wurzeln zwar in den 
technischen Limitierungen der 1990er-Jahre, wurde aber in den späten 
2010er-Jahren bewusst als ästhetische Entscheidung in verschiedenen 
Medien wieder aufgegriffen12 und durch Spiele wie „Superhot“(2016), „Poly 
Bridge“(2016) oder „Besiege“(2015) im Mainstream verbreitet.  

Anders als beim technischen Low-Poly steht hier nicht die Optimierung, 
sondern die Stilisierung im Vordergrund. Low-Poly wurde aufgrund der 
technisch bedingten Vergangenheit häufig als minderwertig angesehen ist 
aber heutzutage mehr als etabliert in der Szene. 

Diese Arbeit bezieht sich mit dem Low-Poly-Begriff auf den Low-Poly-Artstyle und 
nicht auf den primär technischen bedingten Begriff. 

Innerhalb des Low-Poly-Artstyles haben sich verschiedene visuelle Ausprägungen 
etabliert, die sich im Grad der Abstraktion, im Umgang mit Farben sowie in der 
Detailtiefe unterscheiden. Eine der populärsten Stilrichtungen ist der von Synty 
Studios geprägte Low-Poly-Look. Dieser Stil zeichnet sich durch folgende 
Merkmale aus: 

Flat Shading ohne ausgeprägte Licht- und Materialeffekte, klare, gesättigte 
Farben, minimale oder vollständig fehlende Texturen, häufig einfache 
Farbflächen, eine cartoonartige, stilisierte Formsprache, reduzierte, aber liebevoll 
gestaltete Details, die trotz geringer Polygonanzahl eine hohe Lesbarkeit 
gewährleisten 

Synty Studios prägt diesen Stil seit vielen Jahren maßgeblich und bietet 
umfangreiche Low-Poly-Asset-Pakete in zahlreichen 
Themenbereichen an. Diese erfreuen sich insbesondere bei Indie-
Entwicklern großer Beliebtheit und gehören im Unity Asset Store 
regelmäßig zu den meistverkauften Paketen. Im folgenden 
Kapitel prüfen wir diese Annahmen. 

 
11 [7, S. 123]. 
12 [8, S. 1]. 

Abbildung 5: Mit LPTK erstelltes Terrain (eigene Darstellung). 
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2.3.1 Gründe für Low-Poly im LPTK 
Für die Erforschung der Blender Geometry Nodes bietet sich der Low-Poly-
Artstyle aus mehreren Gründen an. Ein zentraler Aspekt ist die starke in 2.1 
beschriebene Relevanz von Unity im Indie-Segment. Wie zuvor dargestellt, 
greifen viele kleine Studios und unabhängige Entwickler auf Unity zurück. 
Innerhalb des Unity Asset Store wiederum zählen Low-Poly-Assets seit Jahren zu 
den beliebtesten und meistverkauften Inhalten (Abbildung 4). Diese Beliebtheit 
unterstreicht, dass der Stil im Indie-Bereich weit verbreitet und akzeptiert ist. 

Eine Auswertung (Anhang A4) der 100 meistverkauften Assets im Unity Asset 
Store (Abbildung 6) zeigt die Relevanz der Low-Poly-Assets. 

1. Ring 1: Art-Assets bilden mit 
46,0% die größte Kategorie 
und spiegeln die höchste 
Kaufbereitschaft für 
vorgefertigte Inhalte wider. 

2. Ring 2: Innerhalb der Art-
Kategorie stellen 3D-Modelle 
mit 39,1% die wichtigste 
Untergruppe dar. 

3. Ring 3: Die entscheidende 
Erkenntnis liefert der äußere 
Ring: 72,2% dieser 
kommerziell erfolgreichen 
3D-Assets setzen auf einen 
Low-Poly-Look. 

Darüber hinaus liegt der 
Schwerpunkt im Low-Poly-Stil 
stärker auf der Geometrie der 
Modelle, während aufwendige 
Materialien und komplexe PBR-
Texturen in den Hintergrund treten. Dies macht den Ansatz besonders geeignet 
für die Erforschung und Umsetzung prozeduraler Modellierung in Blender 
Geometry Nodes. Gleichzeitig reduziert sich dadurch die Fehleranfälligkeit beim 
Export in externe Game Engines. Komplexe Shader-Setups, UV-Mapping oder 
Materialkombinationen, die häufig zu Problemen führen können, spielen im Low-
Poly-Kontext durch die simplen Materialien eine deutlich geringere Rolle. 

Schließlich fließt in die Entscheidung für Low-Poly für das LPTK auch meine 
jahrelange Erfahrung im Bereich der Low-Poly-Modellierung ein. Die Vertrautheit 
mit den typischen Anforderungen und Workflows ermöglicht es, ein praxisnahes 
Werkzeug zu entwickeln, das sich gezielt an den Bedürfnissen von Indie-
Entwicklern orientiert. Zur Erstellung solcher Modelle haben sich, wie in Kapitel 
2.2.2 beschrieben, verschiedene Softwarelösungen etabliert. 
Eine im Indie-Kontext besonders bedeutende ist Blender, auf die im folgenden 
Kapitel näher eingegangen wird. 

Abbildung 6: Sunburst-Chart Darstellung der 
" Top 100 paid Assets", 30.09.2025 (eigene 
Darstellung) Quelle der Daten in A4. 
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2.4 Blender im Indie-Spielentwicklungs Kontext 
Blender wurde 1998 veröffentlicht und ist ein generalisiertes 3D-Softwarepaket, 
welches eine Vielzahl an Funktionen für unterschiedliche Branchen und 
Anwendungsfelder bietet. Besonders seit der Umstellung zur Open-Source Lizenz 
im Jahr 2002 wächst Blender stetig und hat besonders in den letzten Jahren 
erheblich an Relevanz im 3D-Bereich gewonnen (Abbildung 7). 

Dieser Zuwachs lässt sich sowohl durch den breiten Funktionsumfang als auch 
durch die niedrige Einstiegshürde und den freien Zugang erklären.  

Blender bietet Oberflächen zur Modellierung, Animation, Texturierung, Rigging, 
UV-Mapping etc. und deckt die meisten Bedürfnisse an eine moderne 3D-Pipeline 
in einem Tool ab. Besonders im Indie-Segment und in kleineren Studios hat sich 
Blender als zentrales Werkzeug etabliert13 . 
Die Kombination aus Kostenfreiheit, einer aktiven Entwickler-Community und 
Integration moderner Werkzeuge, wie der Geometry Nodes macht es zu einer 
attraktiven Alternative zu kommerziellen Lösungen.  

Gerade für Low- oder No Budget Produktionen ist Blender die einzige Möglichkeit 
und spart enorme Kosten. Der Einsatz vom weitverbreiteten Modellierungs- und 
Animations-Standard „Autodesk Maya“ verursacht beispielsweise jährliche 
Lizenzkosten von 2119 € pro Nutzer14  und ist für kleine Teams ohne Budget 
nicht möglich. 
Was Blender durch seine Open-Source-Natur im direkten Kundensupport 
gegenüber kommerzieller Alternativen fehlt, kompensiert es durch seine sehr 
aktive und offene Community. Es gibt zu beinahe jeder Frage eine Antwort oder 
ein passendes Tutorial, wodurch die Einstiegshürde sowohl finanziell als auch im 
Nutzungskontext deutlich niedriger ist als bei den kostenpflichtigen Alternativen. 
Auch für Forschungsprojekte, bei denen Flexibilität, Anpassbarkeit und 
Transparenz im Vordergrund stehen, bietet Blender durch seine offene 
Architektur klare Vorteile und lässt sich vergleichsweise einfach erweitern, 
beispielsweise durch selbst erstellte Python-Skripte oder Addons. 

 
13 [9]. 
14 [10]. 

Abbildung 7: Google Trends Such-Interesse Populärer 3D-Programme, Blender Hervorgehoben. Datenquelle: Google 
Trends, Suchbegriffe im Zeitraum 01.01.2020 – 24.10.2025 (eigene Darstellung). 
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2.4.1 Blender Add-ons 
Blender bietet im „Scripting“-Tab die Möglichkeit, mithilfe der Blender Python API 
(bpy)15  Python-Skripte direkt im Editor auszuführen oder eigene Erweiterungen 
zu entwickeln. Diese Skripte werden in Form von sogenannten Modulen erstellt 
und können bestimmte Funktionen oder komplexe Abläufe automatisieren. 

Ein einfaches Beispiel für ein Skript, welches alle Objekte in der aktuellen Szene verschiebt 16 : 

1. import bpy # importiert das Blender Python API Modul 
2.  
3. scene = bpy.context.scene # setzt aktuelle Szene in Blender 
4. for obj in scene.objects: # Schleife durch alle Objekte in der Szene 
5.     obj.location.x += 1.0 # Verschiebung aller Objekte um eine Einheit entlang der X-Achse 

 

Add-ons bauen auf dieser Funktionalität auf. Sie erlauben es mehrere Skripte zu 
einer strukturierten Erweiterung zusammenzufassen und ermöglichen eine 
direkte Integration in Blenders Benutzeroberfläche. Dadurch können Entwickler 
und Technical Artists den Funktionsumfang von Blender gezielt erweitern und an 
spezielle Workflows anpassen. 

Im Kontext professioneller Workflows sowie spezialisierter Anwendungen stellen 
Add-ons ein zentrales Werkzeug zur Erweiterung der Funktionalität von Blender 
dar. Community-erstellte Add-ons tragen neben direkten Quellcode-Beiträgen 
wesentlich zur kontinuierlichen Weiterentwicklung der Software bei17. Besonders 
relevante Open-Source-Add-ons werden mitunter direkt in die 
Standarddistribution von Blender integriert und als native Erweiterungen 
bereitgestellt, prominente Beispiele sind Add-ons wie LoopTools18  oder der 
NodeWrangler19. 

Neben Open-Source-Lösungen existiert ein breites Spektrum kommerzieller Add-
ons, die spezifische Anwendungsprobleme lösen und über Drittanbieter 
vertrieben werden. Der größte Marktplatz für Blender-Erweiterungen ist 
Superhive (ehemals Blender Market), über den eine Vielzahl sowohl 
kommerzieller als auch frei verfügbarer Add-ons angeboten wird. 

Die Installation von Add-ons ist sehr einfach und kann über das interne 
Erweiterungs-Panel von Blender erfolgen, was primär für Open-Source-Add-ons 
vorgesehen ist, oder alternativ manuell durch das Einfügen der entsprechenden 
Dateien der lokalen Festplatte. Diese Flexibilität erlaubt es Anwendern, die 
Softwareumgebung gezielt an spezifische Anforderungen anzupassen. 

 
15 [11]. 
16 [12]. 
17 [13]. 
18 LoopTools, fügt mehrere Modellierungswerkzeuge hinzu: 
https://extensions.blender.org/add-ons/looptools/?utm_source=blender-4.5.3-lts. 
19 [14]. 
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2.5 Procedural Content Generation 
Procedural content generation (PCG) in Videospielen beschreibt die 
algorithmische Generierung von Spielinhalten (Game-Assets) mit limitiertem oder 
indirekten Nutzerinput20.  

PCG ist in der Videospiel-Entwicklung weit verbreitet 
und bezieht sich auf verschiedenste Arten von 
Inhalten. Beispiele für PCG reichen von prozeduralen 
Shadern und Materialsystemen, über die 
algorithmische Erzeugung von Meshes und 
Landschaften bis hin zu kompletten Spielwelten. 
Darüber hinaus können beispielsweise auch Musik, 
Animationen oder Partikelsysteme durch prozedurale 
Verfahren erzeugt werden21. 

Seine Ursprünge hat PCG Anfang der 1980er Jahre. 
Spiele wie „Rogue“ (1980) und „Elite“ (1984) werden 
in diesem Kontext häufig als Vorreiter genannt22. 
Damals war PCG und vor allem die prozedurale 
Levelgenerierung für openworld-artige Spiele als eine 
Art Kompressionstechnik unersetzlich23 . Zur 
damaligen Zeit war es unmöglich, große Mengen an 
vordefinierten Daten dauerhaft zu speichern. So wären die Entwickler von Elite 
nicht in der Lage gewesen acht spielbare Galaxien mit jeweils 256 vordefinierten 
Planeten auf der originalen „BBC Micro“-Diskette speichern können. 

Seither hat sich PCG zu einem zentralen Bestandteil moderner Spieleentwicklung 
entwickelt und findet sich in beinahe allen aktuellen Titeln wieder, wobei die 
genaue Implementation und Nutzungsweisen sich komplett voneinander 
unterscheiden können.  

So nutzt „The Elder Scrolls IV: Oblivion“ (2006) prozedurale Systeme, um die 
Spielwelt mit Basis-Vegetation zu füllen, welche im Anschluss manuell von Artists 
bearbeitet wird.  „Minecraft“ (2009) hingegen generiert seine Spielwelten 
vollständig prozedural. Borderlands (2009) wiederum verwendet prozedurale 
Generierung um 17 Millionen verschieden Waffentypen mit unterschiedlichen 
Eigenschaften zu erzeugen. 

Im Zuge dieser Arbeit steht die prozedurale Modellierung im Vordergrund, welche 
als eine zentrale Unterkategorie von PCG zu verstehen ist und sich auf die 
algorithmische Generierung und Manipulation von Geometrien bezieht. 

 

 

  

 
20 [15, S. 14]. 
21 [16, S. 62]. 
22 [15, S. 4]. 
23 [17, S. 502]. 

Abbildung 8, Prozeduraler Shader für 
Vornoi-basierte Glasmalerei (eigene 
Darstellung). 
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2.5.1 Prozedurale Modellierung  
Wie in 2.2.2 angesprochen ist die prozedurale Modellierung ein wichtiger Ansatz 
zur Geometrieerzeugung im Kontext der modernen Spieleentwicklung24. Im 
Gegensatz zur manuellen Modellierung beschreibt sie die Generierung und 
Manipulation von 3D-Geometrie auf Basis von definierten Regeln, Algorithmen 
und Parametern. Sie erlaubt es, komplexe Strukturen wie Gebäude, Vegetation 
oder ganze Landschaften effizient und reproduzierbar zu erzeugen25.  

Der Begriff an sich wird für eine Vielzahl unterschiedlicher Methoden und 
Systeme verwendet und bezieht sich dabei ebenso auf einfache prozedurale 
Modifikationen von handmodellierten Basisgeometrien als auch die automatische 
Erzeugung hoch komplexer Terrains.  

Die Prozedurale Modellierung hat sich in den letzten Jahren stetig 
weiterentwickelt und es wurden verschiedenen Ansätze zur Generation 
verschiedener Objektetypen entwickelt. Diese werden dabei aber durch ihre 
parametrische und non-destruktive Natur vereint.  

Historisch betrachtet, gibt es verschieden Wegweisende Ansätze. Fundamental 
sind dabei beispielsweise die 1968 von Aristid Lindenmayer eingeführten L-
Systeme, welche zur Erforschung pflanzlicher Wachstumsprozesse entwickelt 
wurden und durch iterative Anwendung einfacher Regeln komplexe Strukturen 
erschaffen können26.  

In diesem Kontext ebenfalls häufig erwähnt, sind die Shape Grammars, welche 
häufig zur Erzeugung räumlicher Geometrien, bspw. im Architektur-Kontext, 
verwendet werden27.  

Während frühe Implementation überwiegend textuell, skript-oder codebasiert 
waren28, haben aktuelle Tools den Fokus zunehmend auf visuelle und oder 
nodebasierte Workflows verschoben. Diese ermöglichen es, prozedurale Systeme 
interaktiv, modular und zugänglich zu gestalten, stehen in Form von Blender 
Geometry Nodes im Fokus dieser Arbeit und werden 2.5.5 genauer eingeführt.  

Zunächst werden die Vor- und Nachteile des prozeduralen Ansatzes besprochen.   

 
24 [18]. 
25 [18]. 
26 [19, S. 1]. 
27 [20, S. 615]. 
28 [21]. 
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2.5.2 Vor- und Nachteile prozeduraler Systeme 
Prozedurale Verfahren bieten gegenüber der klassischen, manuellen Erstellung 
von Assets eine Reihe signifikanter Vorteile.  

Sie ermöglichen eine effiziente und skalierbare Generierung großer Mengen an 
Inhalten die, wie in 2.2 beschrieben, einen zentralen Kostenfaktor der 
Spieleentwicklung darstellen. Ein einmal aufgesetztes System kann theoretisch 
unendlich viele Varianten eines 3D-Modells, beispielsweise eines Levels oder 
Baumes, erzeugen29. 

Darüber hinaus bieten prozedurale Systeme non-destruktive Workflows, bei 
denen Änderungen an Parametern jederzeit vorgenommen werden können, ohne 
die zugrunde liegende Struktur dauerhaft zu verändern. Dadurch lassen sich 
Varianten schnell erzeugen und Anpassungen effizient durchführen.  

Trotz dieser Stärken stehen prozedurale Systeme vor verschiedenen 
Herausforderungen.  

Die Entwicklung eines funktionierenden Regelwerks ist komplex und erfordert 
eine sorgfältige Definition der Generierungslogik, um konsistente und ästhetisch 
überzeugende Ergebnisse zu erzielen. Zur definiton ist eine Kombination aus 
künstlerischer und technischer Kompetenz erforderlich30, wodurch eine große 
Einstiegshürde entsteht.  

Die manuelle Erstellung eines einzelnen Assets ist im Regelfall schneller als das 
Aufsetzen eines komplexen Systems, welches dieses Asset automatisch 
generieren könnte.  Auch wenn es theoretisch möglich ist, sollte nicht jedes 
Asset mit einem prozeduralen System erzeugt werden. Das „Ten Thousands 
Bowls of Oatmeal Problem” wird in diesem Kontext häufig genannt und soll 
zeigen, dass die unendliche Variation eines uninteressanten Assets, das Objekt 
nicht interessanter macht31.  

Darüber hinaus neigen PCG-Systeme dazu, wiedererkennbare Muster zu 
erzeugen welche von Spielern erkannt werden können. Ebenso schränken sie die 
künstlerische Kontrolle ein, da spezifische Änderungen in den meisten System 
nicht leicht zu definieren sind.  

Trotz dieser Einschränkungen gilt prozedurale Modellierung heute als zentrale 
Technologie für skalierbare, wiederverwendbare und effizient produzierte Assets. 
Moderne Node-basierte Systeme wie Houdini oder Blender Geometry Nodes 
bieten inzwischen Möglichkeiten, diese Verfahren intuitiv zu gestalten und gezielt 
mit manuellem Design-Input zu kombinieren. Dieser hybride Ansatz, aus 
algorithmischer Generierung und künstlerischer Kontrolle, wird in der Forschung 
als „mixed authorship“ bezeichnet und im folgenden Kapitel näher betrachtet. 

 

 

 
29 [18]. 
30 [17, S. 513]. 
31 [22, S. 3]. 
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2.5.3 Automatic Generation versus Mixed Authorship 
Für Spiele mit nahezu unendlichen Open-Worlds, wie beispielsweise das bereits 
erwähnte Minecraft (siehe 2.5), ist prozedurale Generierung unumgänglich. Diese 
benötigen ein Runtime PCG-System. Runtime-Systeme generieren Inhalte 
dynamisch auf dem Gerät des Nutzers bevor und/oder während der Spieler das 
Programm ausführt und die Welt erkundet. Diese Implementation funktioniert 
also ohne nachträglichen Design-Input, muss autonom spielbare Welten 
erzeugen und wird in der Literatur als „Automatic generation“ bezeichnet32 .  

In der Realität benötigen allerdings nur wenige Spiele diese vollständige 
Prozeduralität zur Laufzeit. Die meisten Titel setzen auf vordefinierte Levels, 
welche größtenteils händisch von Designern und Artists entworfen und umgesetzt 
werden.  
Aber auch hier können prozedurale „Design-Time“-
Systeme33 auf eine spannende Weise eingesetzt werden. 
Hierbei geben Designer oder Spieler gezielten Input, 
welcher durch die prozedurale Logik umgewandelt wird. 
In der wissenschaftlichen Literatur, beispielsweise in 
Procedural Content Generation in Games (2017), wird 
dieses Paradigma als „mixed authorship“ 
definiert34. 

Dieses Prinzip wird in Abbildung 9 beispielhaft 
visualisiert. Die Basis ist der nicht 
eingefärbte Bereich des Terrains, der 
mithilfe der exponierten Parameter des 
Systems erzeugt wurde. Die grün 
überlegten Meshes sind händisch vom 
Designer hinzugefügte Geometrien, welche 
dem prozeduralen Base-Mesh als Union-Boolean-
Operation hinzugefügt werden. Die rot überlegten 
Meshes sind ebenfalls manuell erstellte Geometrien, 
welche dem prozeduralen Terrain (samt der Union-
Meshes) als Difference-Boolean 
abgezogen werden. So kann der 
Designer aktiv auf das prozedurale 
Terrain aufbauen. 

Die in 2.5.2 besprochenen Nachteile von begrenzter Kontrolle, inkonsistenter 
Qualität und repetitiven Mustern werden hierbei durch die Möglichkeit zur 
manuellen Editierung von Designern und Artists mit minimalem Aufwand 
umgangen. 

  

 
32 [15, S. 10]. 
33 Gegenstück zu Runtime-Systemen. Sie werden während der Level-Erstellung genutzt, 
die resultierenden Assets sind zur Laufzeit jedoch statisch. 
34 [15, S. 10]. 

Abbildung 9: Beispielhafte Darstellung des  
‚ProceduralTerrain‘ Systems des LPTK mit visualisierten 
Boolean-Meshes (eigene Darstellung). 
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2.5.4 Moderne Node-Based-Tools 
Für die prozedurale Modellierung haben sich in den letzten Jahren zunehmend 
visuelle, Node-basierte Systeme etabliert. Diese ermöglichen es, komplexe 
Abläufe nicht ausschließlich über Code, sondern über visuell verbundene 
Funktionsblöcke abzubilden. Dadurch können auch Artists und insbesondere 
Technical Artists ohne tiefgehende Programmierkenntnisse prozedurale Systeme 
erstellen, verstehen, anpassen und erweitern. 
Da die meisten prozeduralen Systeme visuelle Ergebnisse erzeugen, sind 
technische und künstlerische Aspekte eng miteinander verknüpft35 . Dies hat zur 
starken Etablierung Node-basierter Workflows geführt. Vergleichbar mit Shader-
Graph-Systemen, die ebenfalls von einer visuellen Darstellung komplexer 
Zusammenhänge profitieren. 

Node-basierte Systeme bieten eine Reihe von Vorteilen gegenüber klassischen 
Skript- oder Code-basierten Lösungen. Der Aufbau aus einzelnen, modularen 
Funktionsknoten ermöglicht non-lineares Arbeiten, einfache Wiederverwendung 
von Teilen eines Setups und eine hohe Transparenz im Entstehungsprozess. 
Dadurch lassen sich selbst komplexe Beziehungen zwischen Eingabeparametern 
und Ausgaben visuell nachvollziehen.  

2.5.4.1 Houdini als Industriestandard  
Das bekannteste und am weitesten entwickelte System in diesem Bereich ist 
Houdini von SideFX. 
Houdini gilt in der VFX- und Game-Industrie als absoluter Industriestandard für 
prozedurale Modellierung und ist in den meisten großen AAA-Studios im Einsatz. 
Das gesamte Programm basiert auf einem Node-Graph-Prinzip, das alle Bereiche 
von Geometrieerzeugung über Partikelsimulationen bis hin zu Materialsystemen 
miteinander verbindet. 
Ein zentrales Merkmal ist die Houdini Engine, welche die direkte Integration 
prozeduraler Assets in Game-Engines wie Unreal und Unity ermöglicht36. Dadurch 
können Artists prozedurale Assets außerhalb von Houdini kontrollieren, 
Parameter anpassen und Änderungen direkt in der Engine sichtbar machen. 

2.5.4.2 Spezialisierte Lösungen 
Neben Houdini existieren auch einige industrierelevante spezialisierte 
Anwendungen, die auf bestimmte Bereiche des PCG-Kosmos fokussiert sind. 
Beispiele sind World Machine37 für Terrain-Generierung oder Material Maker38 zur 
prozeduralen Material-Generierung. Diese Tools sind zwar leistungsfähig, aber 
stark auf ihren jeweiligen Anwendungsbereich limitiert. Generalisten wie Houdini 
oder Blender Geometry Nodes bieten eine deutlich höhere Anpassbarkeit und 
sind zur Erstellung einer prozeduralen Asset-Library mit Fokus auf Geometrie-
Generierung quasi unumgänglich. 

  

 
35 [17, S. 513]. 
36 https://media.sidefx.com/uploads/products/engine/hengine_games_2023.pdf 
37 https://www.world-machine.com/ 
38 https://www.materialmaker.org/ 
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2.5.5 Blender Geometry Nodes 
Mit der Veröffentlichung von Blender 2.92 (2021) wurden die Geometry Nodes 
als Node-basiertes, prozedurales und non-destruktives System zur Erstellung und 
Manipulation von Geometrien eingeführt. Sie erweitern das bestehende Modifier-
Konzept von Blender um eine visuelle Programmierebene, in welche Geometrie 
über einen Node Graph beschrieben werden kann39. 

Einzelne Node Setups können als Modifier Objekten hinzugefügt werden. Die 
Objektgeometrie durchläuft dabei den Modifier-Stack von oben nach unten. Jeder 
Geometry-Node-Tree kann in diesem Stack wie ein einzelner Modifier auftreten 
und erhält über die Group Input Node seine Eingabedaten. Innerhalb des Node-
Trees definieren verschiedene Operation Nodes (z. B. Set Position, Extrude Mesh, 
Distribute Points on Faces) die eigentlichen prozeduralen Schritte. Über die Group 
Output Node wird die modifizierte Geometrie anschließend zurück an den 
Modifier-Stack übergeben. 

 
Abbildung 10: Beispielhafter Node Tree (eigene Darstellung). 

Abbildung 10 zeigt beispielhaft, wie die Geometrie des Würfels, auf welchen der 
Geometry Nodes Modifier angewendet wurde aus der Group 
Input Node in das Socket40 der Set Position Node gezogen 
wird. Über diese wird jeder Punkt der Geometrie um einen 
Meter entlang der Z-Achse verschoben und anschließend 
über die Group Output Node wieder in den Modifier 
Stack übergeben. Abbildung 11 visualisiert diese 
Veränderung. Der graue Würfel stellt die Geometrie vor 
der Set Position Node dar, der orangenen zeigt den 
Würfel nach der Operation. 

Die in die Group Input Node eingespeiste Geometrie 
umfasst dabei mehr als nur die reinen Positionsdaten der 
einzelnen Vertices. Sie stellt ein Datenpaket dar, welches 
sämtliche Attribute des Objekts wie Materialzuweisungen, UV-
Koordinaten, Normalen oder benutzerspezifische Daten 
enthält. Diese Attributebene ist die Basis der 
prozeduralen Logik.  

 
39 Innerhalb dieser Arbeit wird während der konkreten Beschreibung der Geometry Nodes 
eine Vielzahl an englischen Fachbegriffen verwendet. Um den Lesefluss zu erhalten, 
wurde auf eine kursive Markierung dieser Begriffe bewusst verzichtet. 
40 Sockets sind die In- und Outputs einer Node. 

Abbildung 11: Visualisierung des Effekts der 
in Abbildung 10 gezeigten Set Position Node 
auf einem Würfel. Grauer Würfel vor, 
oranger nach der Set Position Operation 
(eigene Darstellung). 
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Abbildung 13: Übersicht der für das LPTK relevanten Datentypen (eigene Darstellung). 

2.5.5.1 Das Attribut-Konzept 
Um Geometry Nodes genauer zu verstehen, ist das Konzept der Attribute 
grundlegend. 

Innerhalb der Geometry Nodes sind Attribute ein generischer Begriff zur 
Beschreibung eines pro Element gespeicherten 
Daten-Blocks41. Attribute sind die Basis der 
prozeduralen Manipulation. Sie ermöglichen es 
Daten gezielt zu lesen, zu modifizieren und neu zu 
schreiben. 

Jedes Attribut wird dabei durch vier Komponenten 
definiert: 

1. Name, eindeutige Bezeichnung 
2. Domain 
3. Datentyp, Art der gespeicherten Werte 
4. Wert, konkreter Wert 

Einen Überblick über die verschiedenen Attribute 
und deren Komponenten kann man sich im 
Spreadsheet machen (Abbildung 12). Betrachtet 
man beispielsweise den verschobenen Würfel. Er 
besteht aus acht Vertices. Die Set Position Node 
arbeitet direkt mit dem positions-Attribut der 
einzelnen Vertices. Die beispielhafte Gliederung 
des Positions-Attributs des Vertex mit Index 0 
(grün markiert) sieht nach der Verschiebung wie folgt aus: 

• Name: position (rot markiert) 
• Domain: Point (Vertex) (blau markiert) 
• Datentyp: Vektor (3D-Vektor) (Implizit durch Wert) 
• Wert: (1, 1, 2) (X-, Y- und Z-Position) (gelb markiert) 

Verschieden Arten von Geometrie verfügen je nach Domain über verschiedene 
Standardattribute. So verfügen Faces beispielsweise über das sharp-face-
Attribut, welches als Boolean gespeichert wird und determiniert, ob ein Face 
smooth oder sharp dargestellt werden soll. Points über Positionen, wie die 
Vertices des Beispielwürfels. 

In Blender 4.5 stehen verschieden Datentypen zur Verfügung, welche innerhalb 
des Node Trees über verschieden Farben visuell kodiert werden (siehe Abbildung 
13) und welche in ihrer Komplexität stark variieren. Von der Einfachheit eines 
Booleans bis hin zur komplexen 4x4 Matrix. 

Zentral zum Verständnis dieser Arbeit ist die Unterscheidung folgender 
Datentypen: 

 
41 [23]. 

Abbildung 12: Spreadsheet-Übersicht der Vertex 
Domain eines Würfels (eigene Darstellung). 
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 Abbildung 16: Hervorhebung der Vertices mit 

zugewiesenem 'HighPoints'-Wert durch Rote 
Kugeln (eigene Darstellung). 

2.5.5.2 Das Feld-Konzept (Fields)  
Die prozedurale Arbeitsweise von Geometry Nodes wird maßgeblich durch das 
Feld-Konzept (Fields) ermöglicht. Im Gegensatz zu klassischen Attributwerten, 
die als statische Werte pro Geometrieelement gespeichert werden, stellen Fields 
Funktionen dar, die einen Wert in Abhängigkeit eines Kontextes generieren42. Ein 
Feld repräsentiert somit eine dynamische Berechnung, die für jedes 
Geometrieelement (wie einen Vertex, eine Edge oder eine Instanz) ausgeführt 
wird, wenn der Node-Tree verarbeitet wird.  

Die Formen der Sockets zeigen hierbei an, welche Sockets Fields und welche 
regulären Daten sind.  

• Kreis: zeigt an, dass ein einzelner Wert erwartet wird, ein Feld kann nicht 
verbunden werden.  

• Diamant: zeigt an, dass ein Feld erwartet wird, ein einzelner Wert kann 
aber angenommen werden. 

• Diamant mit Punkt: Zeigt an, dass ein Socket, welches ein Feld annehmen 
kann, momentan einen einzelnen Wert annimmt. 

Abbildung 13 zeigt eine dynamische Attributzuweisung des 
‚HighPoints‘ Boolean Attributs auf der „Point“-Domain. Die 
Position-Node liefert dabei für jeden Vertex der Geometrie 
einen Wert, dieser wird in diesem Beispiel durch eine 
Separat XYZ-Node auf den Z-Wert reduziert. Die Greater 
Than Node bestimmt folgend, einen Schwellwert über 
welchem Z-Wert (0.000) eine ‚HighPoints‘ Zuweisung 
stattfindet.  

Wird das Objekt verändert, beispielsweise indem die Vertices 
verschoben werden, wird die Attributzuweisung neu evaluiert.  

 
42 https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/fields.html 

Abbildung 15: Darstellung der Vertex 
Domain des Spreadsheets nach der 
'HighPoints' Zuweisung (eigene 
Darstellung). 

Abbildung 14: Field-basierte Attributzuweisung (eigene Darstellung). 
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2.5.5.3 Entwicklung der Geometry Nodes und Arbeitsumgebung 
Auch wenn die Grundkonzepte über die meisten Updates hinweg konstant 
bleiben, befinden sich Blenders Geometry Nodes weiterhin in aktiver 
Entwicklung. Mit nahezu jeder neuen Blender-Version werden zusätzliche Nodes 
eingeführt, bestehende überarbeitet oder deren Funktionsumfang erweitert. 
Bereits während der Bearbeitung des Praxisprojekts (Mai – Juli 2025), wurden 
mit der Veröffentlichung von Blender 4.5 LTS43 zahlreiche neue und verbesserte 
Nodes hinzugefügt, während einige ältere als deprecated markiert wurden.  

Geometry Nodes schließen damit die Lücke zwischen klassischer Modellierung 
und prozeduralen Systemen und bieten eine zunehmend leistungsfähige und frei 
zugängliche Alternative, die insbesondere für Artists und kleinere Studios, bei 
welchen Blender ohnehin im Einsatz ist, attraktive Möglichkeiten eröffnet.  

 

Abbildung 17: Geometry Nodes Oberfläche in Blender 4.5 am Beispiel des „Palisade1“-Node Trees 
(eigene Darstellung). 

Die Darstellung (Abbildung 17) visualisiert, wie der Geometry Node Editor  
(zentral unten) prozedurale Logik für das „Palisade“-Objekt (oben rechts) 
definiert und das Ergebnis über die Group Output Node in den Modifier-Stack 
(unten rechts) übergibt, um die finale Geometrie im 3D-Viewport (zentral oben) 
aus der Basis-Kurve zu erzeugen.  

 
43 https://www.blender.org/download/releases/4-5/ 
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3. Methodik 
Die theoretischen Grundlagen bilden damit das fachliche Fundament dieser 
Arbeit. Auf dieser Basis widmet sich das folgende Kapitel der Methodik sowie der 
konkreten Zielsetzung des Low-Poly-Tool-Kits (LPTK). 

Es beschreibt, wie aus den zuvor erläuterten Anforderungen der 
Spieleentwicklung, den Eigenschaften polygonaler 3D-Modelle und den 
Potenzialen prozeduraler Verfahren ein spezifischer Ansatz für die Entwicklung 
einer prozeduralen Asset-Bibliothek abgeleitet wurde. 

3.1 Anforderungen an die entwickelte Asset-Bibliothek 
Die zentrale Anforderung an das LPTK lässt sich in einem Satz definieren.  

Entwickler mit minimaler 3D-Erfahrung sollen mit Hilfe des LPTKs in der Lage 
sein, mittelalterliche Low-Poly-Welten nach ihren Vorstellungen zu erstellen, 
diese jederzeit in einem non-destruktiven Workflow anzupassen und 
anschließend mit geringem Aufwand in die Game-Engine ihrer Wahl zu 
importieren. 

Ausgehend von diesem Leitgedanken sowie den in der Literatur von Shaker et al. 
(2017, S. 6) beschriebenen „Desirable Properties of a PCG Solution“ ergeben sich 
die folgenden spezifischen Anforderungen an das System: 

1. Benutzerfreundlichkeit, eine einfache Bedienung, die auch Hobby- und 
Solo-Entwicklern den Zugang ermöglicht. 
 

2. Kontrollierbarkeit, ein ausgewogenes Verhältnis zwischen intuitiver Nutzung 
und Parametern für Feinjustierungen. 

 
3. Optische Konsistenz, die generierten Assets sollen einen einheitlichen Low-

Poly-Look haben und sich an Synty-Qualität orientieren. 
 

4. Effizienz, eine deutliche Beschleunigung des Workflows im Vergleich zur 
herkömmlichen Modellierung. 
 

5. Flexibilität, non-destruktive Anpassungsmöglichkeiten sowie Erweiterbarkeit 
durch Dritte mittels zusätzlicher Node Setups. 
 

6. Kompatibilität, einfache Exportierbarkeit der erstellten Modelle in gängige 
Game-Engines wie Unity oder Unreal. 

 
Zusätzlich zu den Anforderungen an das prozedurale System soll auch die 
zugrunde liegende Software-Architektur des LPTK selbst unkompliziert aufgebaut 
und einfach zu erweitern sein. 
Um das LPTK zu entwickeln, müssen zunächst die entsprechenden Werkzeuge 
ausgewählt werden. Diese Auswahl wird im folgenden Kapitel besprochen.  
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3.2 Auswahl der Werkzeuge 

3.2.1 Blender und Geometry Nodes als prozedurale Basis 
Zu Beginn des Projekts fiel die Wahl auf Blender Geometry Nodes. Diese 
Entscheidung beruhte darauf, dass meine bisherige 3D-Erfahrung auf Blender 
basierte und der Einsatz eines vertrauten Werkzeugs es mir erlaubte, mich 
unmittelbar auf die Erforschung der Geometry Nodes zu konzentrieren, anstatt 
mich in ein anderes Programm einzuarbeiten. 

Houdini war mir als Software zwar bekannt, ich konnte aufgrund unzureichender 
Erfahrung mit prozeduraler Modellierung aber keine klaren Kriterien benennen, 
welche für oder gegen Blender sprechen würden. 

Blender bietet, wie bereits in 2.4 beschrieben, zudem Eigenschaften, die es 
insbesondere im Indie-Kontext attraktiv machen: Es ist Open-Source, kostenfrei 
verfügbar, stark generalisiert und in der Indie-Community sehr verbreitet 
(Abbildung 18).  

Abbildung 18: What kind of work do you do with Blender? (Datenquelle: 2024 Blender User 
Survey)44 (eigene Darstellung). 

Houdini hingegen ist, wie in 2.5.4 beschrieben, etablierter Standard für 
professionelle PCG-Projekte. Die Nutzung von Houdini erfordert tiefgehendes 
technisches Verständnis, wodurch es sich fast ausschließlich an Spezialisten 
richtet und deutlich weniger in der Indie-Szene verbreitet ist. Hinzu kommt, dass 
kommerzielle Projekte für die Verwendung von Houdini eine kostenpflichtige 
Lizenz benötigen, was jedoch häufig nicht in das Budget kleinerer Indie-
Produktionen passt. 

3.2.2 Add-on statt Blenders integrierter Asset-Library  
Seit Blender 3.0 gibt es in Blender ein integriertes Asset-Library-System45, 
welches ermöglicht Objekte, Materialien, Posen oder auch Geometry-Node-
Groups zentral zu speichern und mithilfe einer einfachen Drag-and-Drop-
Oberfläche über mehrere Projekte hinweg zu nutzen. 

 
44 [9]. 
45 [24]. 
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Dieses Library-System ist mittlerweile der Standard für kleinere Asset-Packs und 
besonders für klassische Assets wie statische 3D-Modelle, Materialien oder 
HDRIs46 eine unkomplizierte Lösung.  

 

Die Vision des LPTK geht jedoch über die reine Wiederverwendung klassischer 
Assets hinaus. Das System soll nicht bloß das Platzieren von Inhalten 
ermöglichen, sondern den Nutzer gezielt durch den gesamten Erstellungsprozess 
bis hin zum Export führen. 

Eine Implementierung des LPTK als eigenes Add-on bedeutet zwar einen 
erheblichen Mehraufwand, bietet jedoch entscheidende Vorteile und macht den 
Unterschied zwischen einem professionell nutzbaren Tool für Dritte und einer 
internen Library aus. 

Vorteile eines eigenen Add-ons: 

1. Mehr Kontrolle über den User-Flow während des gesamten Prozesses. 
2. Spezifische Einfügungslogik für unterschiedliche Node Setups (z. B. mesh- 

oder curve-basierte Operationen). 
3. Übersichtlichere Tooltips und ein konsistentes Interface. 
4. Integration der Export-Funktionalitäten, ohne das Interface zu 

fragmentieren.  

Gerade für weniger erfahrene Nutzer ist die integrierte Asset-Library in Blender 
sowohl in der Benutzung als auch in der Installation kompliziert und nicht intuitiv. 
Durch ein eigenständiges Add-on lässt sich der Workflow klarer strukturieren, 
wodurch das Tool insgesamt zugänglicher und effektiver wird. 

 

  

 
46 HDRIs stehen im 3D-Kontext für „High Dynamic Range Environment Textures“ 

Abbildung 19: Asset Browser UI der LPTK Asset-Library (eigene Darstellung). 
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4. Umsetzung 
Das vierte Kapitel behandelt die praktische Umsetzung des beschriebenen 
Konzepts. Ziel ist es, zu zeigen, wie prozedurale Low-Poly-Assets mithilfe von 
Blender Geometry Nodes und der Blender Python API zu einem funktionalen 
Werkzeugsystem, dem LPTK, zusammengeführt werden können. 47 

Die Umsetzung gliedert sich in zwei Unterkapitel: 

4.1 Geometry Node Trees: 
Dieser Abschnitt widmet sich der Konzeption, Struktur und technischen 
Umsetzung der prozeduralen Systeme innerhalb von Blender. Anhand 
verschiedener Node Setups werden exemplarisch zentrale Konzepte 
vorgestellt und erläutert. 

4.2 Add-on-Entwicklung: 
Aufbauend auf den prozeduralen Systemen beschreibt dieser Abschnitt 
die Erweiterung von Blender um eine benutzerfreundliche Oberfläche 
und Automatisierungslogik. Mithilfe der Blender Python API wird das 
LPTK als Add-on implementiert, um die erstellten Node-Systeme 
zugänglich, modular und effizient nutzbar zu machen. 

4.1 Entwicklung der Geometry Node Trees 
In diesem Kapitel wird die Konzeption und Umsetzung prozeduraler Low-Poly-
Assets mit Blender Geometry Nodes behandelt. Ziel ist es, die grundlegenden 
Prinzipien der Systemarchitektur verschiedener Systeme des LPTK zu erläutern 
und zu zeigen, wie modulare, nicht-destruktive Workflows für die Asset-
Erstellung umgesetzt werden können. 

Es existieren verschiedene Ansätze, prozedurale Generierung in 
Produktionspipelines zu integrieren. In vielen Fällen werden solche Systeme als 
Zwischenschritt oder Ausgangspunkt genutzt, um wiederkehrende Arbeitsschritte 
zu automatisieren. Dieser Ansatz eignet sich vor allem für größere Teams mit 
spezialisierten Tools oder Engine-basierten Pipelines. 

Das LPTK verfolgt einen alternativen Ansatz. Es richtet sich gezielt an kleinere 
Teams oder Einzelentwickler, die in Blender arbeiten und einen direkten, 
intuitiven Zugang zu prozeduraler Modellierung suchen. Entsprechend liegt der 
Fokus weniger auf komplexer Pipeline-Integration, sondern auf Bedienbarkeit, 
Modularität und Stabilität. 
Zentral ist dabei die Idee der Non-Destruktivität, jede Veränderung bleibt 
reversibel und parameterbasiert steuerbar. Die Arbeit mit den LPTK-Systemen 
soll sich soll sich in erprobte Arbeitsabläufe einpassen, vergleichbar mit einem 
integrierten Level-Editor, der die Arbeit in Blender erleichtert. 

Darüber hinaus wurde bei der Entwicklung der einzelnen Node Trees auf eine 
klare, erweiterbare Struktur geachtet, sodass sowohl eigene Anpassungen als 
auch spätere Erweiterungen durch erfahrene Nutzer problemlos möglich sind. 

 
47 Selbstbenannte Konzepte werden dabei in einfachen Anführungszeichen 
gekennzeichnet. 
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Im Folgenden werden zunächst grundlegenden Konzepte anhand eines einfachen 
Beispiel-Assets erläutert. Anschließend wird die Parametrisierung zur Steuerung 
der Systeme vorgestellt, bevor vier ausgewählte, konzeptionell unterschiedliche 
Implementierungen des LPTK detailliert beschrieben werden. 

4.1.1 Erste Experimente 
Das Praxisprojekt zu dieser Arbeit stellt meinen ersten tiefergehenden 
Berührungspunkt mit Blenders Geometry Nodes und der prozeduralen 
Modellierung im Allgemeinen dar. Um ein grundlegendes Verständnis für die 
Funktionsweise, Möglichkeiten und Limitationen zu entwickeln, habe ich mich 
zunächst primär mithilfe von Online-Tutorials sowie der Analyse bestehender 
Systeme beschäftigt.  

In dieser explorativen Anfangsphase entstanden verschiedene Node-Trees, von 
denen einige als technische Grundlage späterer Systeme dienten. Eines der 
ersten Systeme, welches in abgewandelter Form in das LPTK integriert wurde ist 
das ‚Funky-Tree‘-System.  

Das System basiert auf einem Tutorial48 und verarbeitet freihand 
gezeichnete Splines (Kurven) zu stilisierten Low-Poly-Bäume.  

Es ist dabei nicht vollprozedural, sondern instanziiert vormodellierte 
Äste und Laub auf der gemalten Kurve und fügt dieser einen 
konfigurierbaren Radius hinzu.  

Die gemalte Kurve wird im ersten Schritt durch eine Resample Curve Node 
neu abgetastet und anschließend in drei parallel ausgeführten Node-Gruppen 
verarbeitet, deren Ausgaben danach wieder zusammengefügt werden. 

Die ‚TopLeaf‘-Gruppe führt eine endpoint selection aus und instanziiert auf 
dem obersten Punkt der Kurve das ‚TopLeaf‘-Model. 

Die ‚BranchesAndLeafs‘-Gruppe instanziiert entlang der 
resample curve in die ‚Branches‘-Collection, welche zwei 
Zweig-Varianten enthält. 

Währenddessen erzeugt die ‚Trunk‘-Gruppe mithilfe der Set Curve 
Radius Node ein Mesh aus der neu abgetasteten Kurve. 

Anschließend werden die separat erzeugten Geometrien mit 
der Join Geometry Node zu einem Objekt zusammengeführt. 
Abbildung 20 auf der folgenden Seite zeigt den Aufbau des 
Node-Trees und visualisiert die Ergebnisse der einzelnen Gruppen. 

 
48 [25]. 

Abbildung 20:Rendering eines 
‚FunkyTrees‘ auf einem ‚MeshTerrain‘ 
(eigene Darstellung). 

25 
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Um die prozeduralen Parameter des Systems zu steuern kann der Nutzer 
entweder die Form der Kurve im 3D-Viewport anpassen oder die exponierten 
Parameter des Systems konfigurieren. Die Parametrisierung von Geometry Nodes 
wird im nächsten Kapitel anhand des ‚FunkyTree‘-Systems besprochen. 

Abbildung 21: Node-Tree des ‚FunkyTree‘-
Systems mit visualisierten 
Verarbeitungsschritten (eigene Darstellung). 

Benutzerdefinierte Eingabekurve 
(Control Points dargestellt) 

Gleichmäßiges Resampling 
der Kurve mit Resample Curve 

Instanziierung des ‚TopLeaf‘-Modells 
am Endpunkt der Kurve 

Zusammenführung der 
Teilgeometrien durch Join Geometry 

Instanziierung der ‚Branch‘-
Modelle entlang der Kurve 

Generierung des Stammes 
über ‚Curve-to-Mesh‘-Prozess 
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4.1.2 Parametrisierung anhand des ‚FunkyTree‘-Systems 
Wie bereits in 3.1 beschrieben, stellt die Kontrollierbarkeit prozeduraler Systeme 
eine zentrale Herausforderung dar. Einerseits sollen Nutzer in der Lage sein das 
Objekt oder die Geometrie genau nach ihren Vorstellungen anpassen zu können, 
ohne in den Geometry Node Editor einsteigen zu müssen, andererseits soll das 
System den Nutzer auch nicht mit zu kleinteiligen Konfigurationsmöglichkeiten 
erschlagen.  

Die meisten Parameter im Node-Tree lassen sich über Sockets durch die Group 
Input Node in den jeweiligen Geometry Nodes Modifier, wie in 2.5.5 beschrieben, 
exponieren. Damit lassen sich interne Werte zugänglich machen, ohne in den 
Node Tree navigieren zu müssen. Beispielsweise kann der Parameter 
‚TrunkRadius‘ aus der internen ‚Trunk‘-Gruppe herausgelöst und direkt in den 
Group Input Node verschoben werden (siehe Abbildung 22). 

Wird ein Parameter in den Group Input gezogen, 
erscheint dieser automatisch im Group Sockets Panel des 
Node-Trees und wird dadurch konfigurierbar. 

Innerhalb des Group Sockets gibt es in Blender die 
Möglichkeit, die exponierten Parameter für optimale 
Nutzung zu spezifizieren. Es können Eingabedatentyp 
definiert, visuelle Gruppen (Panels) erstellt, 
Wertebereiche begrenzt, passende Standardwerte 
gesetzt und hilfreiche Tooltips eingefügt werden. 

In Abbildung 23 ist der ‚TrunkRadius‘-Parameter, des 
‚FunkyTree‘ Group Sockets ausgewählt. Die 
Konfigurationsmöglichkeiten für diesen Input sind 
sichtbar. Der „Type“ zeigt den Datentyp des 
‚TrunkRadius‘, die Description ist der Tooltip, welcher 
beim Hovern über den Parameter im Modifier angezeigt 
wird. Der Subtype bestimmt die Darstellung im Modifier 
(Distance = Angabe des Wertes in Metern). Der Default 

Abbildung 22: Ausschnitt vom ‚FunkyTree‘-Setup mit Fokus auf der Group Input Node und der ‚Trunk‘-Gruppe 
(eigene Darstellung). 

Abbildung 23: Group Sockets der "FunkyTree" Group 
Input-Node, einseh- und konfigurierbar im Node-Backend 
(eigene Darstellung). 
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Parameter bestimmt den Standardwert (0,5 Meter) und die Min- und Max-Felder 
definieren den Wertebereich, welchen der User im Modifier definieren kann. 

Abbildung 24 stellt die konfigurierten Group 
Sockets als kontrollierbare Parameter im 
Geometry Nodes Modifier an und ist somit 
das Frontend der in Abbildung 23 gezeigten 
Konfiguration. 

Es existieren unterschiedliche 
Herangehensweisen zur Parametrisierung. 
Während einige Geometry Nodes Entwickler 
beinahe jeden Parameter exponieren, 
reduzieren andere die Bedienung bewusst auf 
weniger Kernparameter. 

  

Da sich das LPTK explizit an Anwender ohne tiefgehende Kenntnisse zur 
prozeduralen Modellierung richtet, wurde stets eine Balance zwischen Kontrolle 
und Verständlichkeit bei der Architektur der Systeme angestrebt. 

Die ausgewählten Parameter sind zu diesem Zweck mit praxistauglich Werten 
vorbelegt und auf sinnvolle Wertebereiche begrenzt. Eine strukturierte 
Gruppierung innerhalb der Parameter-Panels, hilfreiche Beschreibungen und 
Tooltips erleichtern die Nutzung. 

Die Parametrisierung stellt somit einen wesentlichen Faktor für die Nutzbarkeit 
und Erweiterbarkeit der gesamten prozeduralen Asset-Bibliothek dar.  

Während der Entwicklung sämtlicher LPTK-Assets wurde daher konsequent 
versucht, eine ausgewogene Balance zwischen kreativer Kontrolle und 
Bedienbarkeit zu erreichen. 

Nachdem anhand des ‚FunkyTree‘-Systems die grundlegenden Prinzipien zur 
Strukturierung, Modularisierung und Parametrisierung prozeduraler Node Setups 
vorgestellt wurden, folgt nun die schrittweise Erweiterung dieser Ansätze auf 
komplexere Anwendungskontexte. 

Als nächstes wird ein kurvenbasiertes Verfahren zur Pfadgenerierung anhand des 
‚StonePath'-Assets erläutert. Analog zum ‚FunkyTree‘, werden auch hier Objekte 
anhand einer Nutzerdefinierten Kurve instanziiert, jedoch wurde das System um 
einige anwendungsspezifische Funktionalitäten erweitert. 

 

 

  

Abbildung 24: Geometry Nodes Modifier des 
‚FunkyTree‘-Systems (eigene Darstellung). 
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4.1.3 Kurvenbasierte Pfadgenerieung 
Für Assets wie Pfade bietet sich eine dynamische Generierung besonders gut an. 
Zwar existieren statische Baukastensysteme, welche die individuelle 
Zusammensetzung einzelner, vordefinierter Pfadelemente erlauben, ein 
prozeduraler Ansatz, der sich automatisch an unterschiedliche Untergründe oder 
Terrains anpasst und einem nutzerdefinierten Pfad folgt, stellt jedoch die deutlich 
elegantere und unkompliziertere Lösung dar. 

In diesem Kapitel wird die prozedurale Pfadgenerierung anhand des ‚StonePath‘-
Systems erläutert, welches mithilfe von nutzerdefinierten Kurven dynamische 
Pfade erzeugen kann, die sich jedem Untergrund anpassen. 
Das System ist vergleichsweise simpel, erlaubt es aber, Kurven auf Oberflächen 
zu zeichnen, entlang derer in einer definierbaren Breite Steine platziert werden, 
sodass ein natürlicher Pfad entsteht. 

Zur Erstellung der Kurven wird, wie bereits beim ‚FunkyTree‘-System, das 
integrierte Freehand Spline-Werkzeug von Blender verwendet. Dieses ermöglicht 
es, Kurven freihand zu zeichnen und direkt auf bestehende Objekte zu 
projizieren. 
Nach dem Zeichnen der Basiskurve kann der Nutzer den Pfad mithilfe 
verschiedener exponierter Parameter non-destruktiv anpassen. 

4.1.3.1 ‚Curve to Plane‘ 
Um Steine entlang eines Pfades zu platzieren, bietet sich die 
Instanziierung von Objekten auf einer Fläche an. 
Im Gegensatz zum ‚FunkyTree‘-System, bei dem Äste direkt 
entlang der vom Nutzer gezeichneten Kurve instanziiert 
werden, benötigt der ‚StonePath‘ eine Fläche mit 
definierbarer Breite, auf der die Steine verteilt 
werden können. 

Dafür wird die gezeichnete Kurve im ersten Schritt in 
eine Plane umgewandelt, die als Basis für die 
Instanzen dient. 
Dieser Prozess erfolgt in der Node-Gruppe ‚Curve to Plane‘. 

Zunächst wird die Kurve entlang ihrer Normalen um die Hälfte des 
nutzerdefinierten Width-Parameters verschoben, welcher die Breite des 
späteren Pfades bestimmt. 
Anschließend wird sie mithilfe der Curve to Mesh und Extrude Mesh 
Nodes in ein Mesh konvertiert und extrudiert, um eine ebene Fläche zu 
erzeugen. Durch die Verschiebung um die halbe Breite verläuft die 
Mittellinie dieser Fläche exakt entlang der ursprünglichen Kurve. 
So entsteht eine flexible, parameterbasierte Grundlage, auf der 
die Steine später gleichmäßig verteilt werden können.  

Abbildung 26: Darstellung des ‚StonePath‘-Systems 
auf einem ‚MeshTerrain‘ (eigene Darstellung). 29 

Abbildung 25: 'Curve to Plane'-Gruppe 
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4.1.3.2 Instanziierung und Projektion mit ‚Stones on Surface‘ 
Nachdem die Kurve in eine Plane überführt wurde, wandert diese optional durch 
die ‚Shrinkwrap Plane‘-Gruppe und anschließend in die ‚Distribute Stones on 
Surface‘-Gruppe. Diese bimodale Logik wurde implementiert, um sowohl 
nutzerdefinierte Assets verwenden zu können, als auch eine vollprozedurale 
Alternative zu bieten.  

Modus 1: Interne Prozedurale Generierung (maximale Konformität) 

Für Projekte, welche keine eigenen Steinkollektionen benötigen (repräsentiert 
durch den False-Pfad der Switch Node), wird die Stein-Geometrie prozedural 
erzeugt, wodurch eine optimale Projektion erfolgen kann: 

1. Punktverteilung: Die Plane wird mittels der Distribute Points on Faces Node 
in eine Punktwolke überführt. Diese Punkte können dabei anhand 
exponierter Parameter vom Nutzer in der Dichte konfiguriert werden und 
stellen die Punkte zur Instanziierung der einzelnen Steine dar. 

2. Instanz-Geometrie: Anstelle eines externen Assets wird ein einfaches 3x3-
Grid (eine Plane mit neun Vertices) auf die Punkte instanziiert. 

3. Projektionslogik: Die Vertices dieses einfachen Grids dienen als individuelle 
Projektionspunkte. Mithilfe der Geometry Proximity Node werden die 
nächstgelegenen Positionsdaten des Zielobjekts für jeden Vertex aller 
Grids ermittelt. Durch die nachfolgende Set Position Node werden die 
Vertices der Grids auf diese ermittelten Positionen verschoben. 

Dieser Mechanismus projiziert die Geometrie jeder einzelnen Instanz auf die 
Oberfläche, wodurch sich die Steine dynamisch der Krümmung, Neigung und 
Höhe des Objekts, bspw. eines Terrains, anpassen und somit eine höchstmögliche 
Terrain-Konformität gewährleisten. 

Modus 2: Externe Asset-Kollektion (Künstlerische Kontrolle) 

Will der Nutzer eine externe Stein-Kollektion als Instanzobjekt verwenden 
(repräsentiert durch den True-Pfad der Switch Node), wird die Plane an sich 
zunächst als Ganzes auf das Ziel-Terrain projiziert (gewrappt). 

1. Technischer Mechanismus: Dies geschieht durch die ‚Shrinkwrap Plane‘-
Gruppe, welche jeden Vertex des Pfades, mithilfe der Geometry Proximity 
Node auf das nächstliegende Face der Projizierungs-Geometrie projiziert. 

2. Resultat: Anschließend wandert die per Shrinkwrap-Projektion angepasste 
Plane ebenfalls in die Distribute Points on Faces Node, wobei in diesem Fall 
die erzeugte Punktwolke und die daraus resultierende Instanziierung (in 

Abbildung 27: Bimodale Schaltungslogik 
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der folgenden Gruppe) grob der Terrain-Oberfläche folgen. Da die 
Instanzen selbst jedoch ihre ursprüngliche Geometrie beibehalten, limitiert 
dieser Modus die Detailgenauigkeit der Terrain-Konformität zugunsten der 
Verwendung komplexer, manuell erstellter Assets49. 

4.1.3.3 ‚Material Manager‘ 
Die korrekt platzierten Geometrien werden anschließend in die ‚Material 
Manager‘-Gruppe übergeben. 

Hier erfolgt die Materialzuweisung der einzelnen Steine. Die Logik verwendet eine 
Random Value Node, um einen zufälligen Wert für jede Instanz zu generieren. 
Dieser Index-Wert wird anschließend genutzt, um über die Set Material Index 
Node jeder Instanz eines von drei verschiedenen Materialien zuzuweisen. Die 
Farbe der einzelnen Materialien kann hierbei über exponierte Parameter im 
Modifier frei konfiguriert werden. 

4.1.3.4 ‚Default Stone Extrusion and Deformation‘ 
Dieser abschließende Verarbeitungsschritt wird nur auf die intern prozedural 
erzeugten Steine (Modus 1/False-Pfad) angewandt und dient der Erzeugung von 
geometrischer Tiefe und der Brechung der Uniformität. 

Extrusion und Skalierung: Die auf das Terrain projizierten, aber noch flachen 
Stein-Planes werden mittels der Extrude Mesh Node extrudiert, um ihnen eine 
Höhe zu verleihen. Die neue, obere Fläche wird anschließend skaliert, um die 
Kanten optisch zu brechen und die Erscheinung eines abgerundeten Steins zu 
erzeugen. Die beiden Parameter können hierbei ebenfalls im Modifier frei 
konfiguriert werden. 

Zufällige Verformung: Die final extrudierte Geometrie wird einer prozeduralen 
Deformation unterzogen. Hierfür wird eine Noise Texture Node mit einer Set 
Position Node kombiniert. Die Stärke der Verformung wird dabei von einer 
Random Value Node bestimmt, welche durch definierbare Min- und Max-Werte 
einer Map Range Node gesteuert werden kann.  

 
49 Hierbei ist zu erwähnen, dass das System noch einen zusätzlichen Modus anbietet, welcher die Geometrie der 
eingespeisten Objekte analysiert, die Vertices der nach unten gerichteten Faces selektiert und diese auf das 
Terrain shrinkwrappt. Bei einfachen Assets kann dieser Ansatz funktionieren, bei komplexeren Stein-Assets 
kann dies jedoch zur starken Verzerrung der Steingeometrie führen. 

Abbildung 28: Darstellung der Pfadgenerierung in drei Schritten  

1. Visualisierung eines Nutzergezeichneten Basispfads (links) 
2. Aus Pfad generierte Plane und aus Plane generierte Punktwolke (mittig) 
3. Finales Terrain Pfad nach Instanziierung, Projektion, Einfärbung, Extrusion und Verformung der 
Grids (rechts) 
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4.1.4 ‚ProceduralTerrain‘ 
Das ‚ProceduralTerrain‘-System ist das komplexeste System 
des gesamten Projekts und wurde von Beginn bis zum 
Abschluss des Praxisprojekts kontinuierlich erweitert und 
verfeinert.  

(Voll-)prozedurale Terrain- und Level-Systeme sind, wie in 
2.5 beschrieben, eine der häufigsten Formen von PCG-
Integration in der Spieleentwicklung. Für einen Design-
Time-bezogenen, Mixed-Authorship (in 2.5.3 behandelt) 
Workflow aber weniger geeignet. In diesem Kontext sind 
Kontrollier- und Erweiterbarkeit weitaus wichtiger als die 
Möglichkeit zur unendlichen Generierung. 

Das ‚ProceduralTerrain‘ unterscheidet sich deshalb 
fundamental von den vollprozeduralen Implementationen 
eines Terrain-Systems. Es liefert eine prozedurale 
Basisgeometrie, die als Ausgangspunkt oder Inspiration 
dient, aber vollständig veränder- und konfigurierbar ist. 

Das System ist ein umfangreicher Node Tree mit über 50 
konfigurierbaren Parametern. Auf diese 
Parameter und die grundlegende 
Architektur des Systems werde 
ich in diesem Kapitel eingehen. 
Die Logik des Systems ist 
größtenteils in Reihe geschaltet 
und iteriert die Geometrie Schritt 
für Schritt. 

  

Abbildung 29: Vereinfachte vertikale 
Darstellung des ‚ProceduralTerrain‘-Setups 
(eigene Darstellung). 

Abbildung 30: Beispiel Rendering eines ‚ProceduralTerrain‘ (eigene 
Darstellung). 
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4.1.4.1 Basis-Mesh & Booleans 
Die erste Node-Gruppe erzeugt das Basis-Mesh des Terrains. Ausgangspunkt ist 
eine einfache Plane, auf die der Geometry Nodes Modifier angewendet wird. 
Diese wird zunächst unterteilt (subdivided) und anschließend mithilfe mehrerer 
kombinierter Noise Texture Nodes verformt. Über eine Set Position Node werden 
die Z-Koordinaten der einzelnen Vertices anhand der noise-basierten Werte 
angepasst, wodurch eine prozedural generierte Terrainoberfläche entsteht.

 
Abbildung 31: ‚ProceduralTerrain‘ Basis-Mesh mit visualisierten Vertices und deren Z-Positionen 
(eigene Darstellung). 

Für die Verformung stehen drei unterschiedlich konfigurierte Noise-Maps zur 
Verfügung, welche über die Presets ‚Default‘, ‚Hills‘ und ‚Plateau‘ abgerufen 
werden können. 

Das Terrain durchläuft anschließend zwei Mesh Boolean Nodes: zunächst einen 
Union Boolean, danach einen Difference Boolean. Beide verwenden 
nutzerdefinierte Collections als Input, wodurch zusätzliche Geometrien manuell 
auf das Terrain addiert oder daraus subtrahiert werden können. 

4.1.4.2 ‚Merge & Triangulation‘ 
Anschließend wird die Geometrie in die ‚Merge & Triangulation‘-Gruppe geführt. 
Hier werden Vertices, welche einen definierten Distanzschwellwert 
unterschreiten, zusammengeführt (merged). Dieser Schritt ist essenziell, um die 
durch Noise erzeugte mit der vom Nutzer eingefügten Geometrie zu 
verschmelzen und unnatürliche Übergänge zu vermeiden. 

 

Abbildung 32: 'BaseMesh & Booleans'- und 'Merge & Triangulation'-Gruppe 
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4.1.4.3 ‚Material Manager‘  
Nachdem durch die ersten beiden Node-Gruppen das grundlegende Mesh erzeugt 
wurde, wird die Geometrie aufgetrennt und parallel an zwei weitere Gruppen 
übergeben.  

Der ‚Material Manager‘ übernimmt dabei die Aufgabe, einzelnen Flächen (Faces) 
automatisch verschiedene Materialien zuzuweisen. Die Selektion erfolgt zunächst 
parametrisch mithilfe mehrerer miteinander verknüpfter Systeme, kann jedoch 
bei Bedarf auch manuell angepasst werden.  

Standardmäßig umfasst das System vier Materialien: ‚Stone‘, ‚Dirt‘, ‚Grass‘ und 
‚TopGrass‘. Die jeweiligen Basisfarben dieser Materialien können direkt im 
Modifier-Panel angepasst werden, wodurch der Nutzer sofortiges visuelles 
Feedback erhält.  

Im ersten Schritt der parametrischen Selektion wird für jede Fläche das 
Skalarprodukt zwischen ihrer Normalrichtung und der globalen Z-Achse 
berechnet. Dadurch erhält jedes Face einen numerischen Wert im Bereich von −1 
(vollständig nach unten gerichtet) bis 1 (vollständig nach oben gerichtet), der 
beschreibt, wie stark seine Ausrichtung mit der globalen Z-Richtung 
übereinstimmt. Nutzer können dadurch mithilfe der Compare Node 
Neigungswinkel-Schwellwerte konfigurieren, um den verschiedenen Faces 
entsprechende Materialien zu zuzuweisen.   

So lässt sich das Verhältnis zwischen ‚Stone‘, ‚Dirt‘, ‚Grass‘ und ‚TopGrass‘ 
feinjustieren und an verschiedene Geländetypen anpassen. Darüber hinaus bietet 
das System mehrere optionale Zusatzfunktionen:  

• Ein höhenbasierter ‚Stone Threshold‘, der die Materialverteilung an die 
relative Höhe des Meshes koppelt und so die gezielte Definition bergiger 
Regionen in entsprechenden Höhen präziser abbildet.  

• Eine ‚Overhang Detection‘, die mithilfe von Raycasts entlang der positiven 
Z-Achse erkennt, ob eine Fläche überdeckt ist und die Zuweisung eines 
Overhang-Materials erzwingt. 

Diese Kombination aus geometrischer Analyse und benutzerdefinierbaren 
Parametern ermöglicht eine präzise, visuell stimmige und zugleich prozedurale 
Materialverteilung.  

 

 

 

  

Abbildung 33: 'Material Manager'- und 'Polish'-Gruppe 
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4.1.4.4 ‚Water Generation‘ 
Parallel zur Geometrie im ‚Material Manager‘ wird die Basisgeometrie auch in das 
‚Water Generation‘-System übergeben. Die einfachste Möglichkeit, Wasser in ein 
Terrain zu integrieren, besteht darin, eine Plane mit einem Wassermaterial über 
die gesamte Fläche des Terrains zu legen. 
Dieser Ansatz ist jedoch sehr limitiert. Er erlaubt lediglich einen globalen 
Wasserspiegel und verhindert die gezielte Deaktivierung einzelner 
Wasserbereiche, wodurch es unmöglich ist, eine Schlucht oder Höhle unterhalb 
des globalen Wasserspiegels korrekt darzustellen.  

Um diese Einschränkung zu umgehen, wurde ein gruppenbasierter Ansatz 
entwickelt, welcher eine flexiblere Steuerung und die gezielte Entfernung der 
einzelnen Wasseroberflächen anhand ihrer Gruppen ermöglicht. 

Bei der Umsetzung traten mehrere Komplikationen auf, wodurch das System 
komplex und rechenintensiv wurde. Eine der zentralen Herausforderungen 
bestand darin, die relevante Geometrie zu selektieren, um die Punkte einzelner 
Gewässer präzise zu gruppieren und anschließend als zusammenhängende 
Meshes zu verbinden. 

Zur Generierung der Wasseroberflächen werden zunächst die äußeren Kanten der 
Basisgeometrie selektiert und entlang der Z-Achse nach oben verschoben, um 
eine geschlossene Hülle um die Geometrie zu erzeugen. Anschließend wird diese 
Geometrie samt der Hülle mit einer Distribute Points on Faces Node in eine 
Punktwolke umgewandelt. Alle Punkte, welche nicht auf 
Höhe (Z-Position) des nutzerdefinierten Wasserspiegels 
plus dem definierbaren Schwellwert des WaterLevel-
Parameters liegen, werden gelöscht.  

Im nächsten Schritt werden die übrigen Punkte 
auf eine einheitliche Z-Position verschoben, 
wodurch eine saubere, horizontale 
Verteilung auf Wasserspiegelhöhe 
entsteht (dargestellt als rote Punkte 
in Abbildung 35). 
Aus dieser bereinigten 
Punktwolke wird mit der Points 
to Volume Node ein Volumen 
erzeugt (blaue Volumen in 
Abbildung 35). Dieser Schritt 
ist essenziell, durch ihn ist es 
möglich, nebeneinanderliegende Punkte zu 
einem geschlossenen Volumen zusammenzufassen. 
Das resultierende Volumen wird anschließend in ein Mesh 
konvertiert.  

Abbildung 35: ‚ProceduralTerrain‘ mit visualisierten Punktwolken (rot) 
und hervorgehobenen Wasser-Volumen (blau) (eigene Darstellung). 

Abbildung 34: 'Water Generation'-Gruppe 
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Diese separaten Meshes lassen sich mithilfe der Mesh Island Node gruppieren. 
Über den Radiusparameter der Point to Volume Node lässt sich steuern, welche 
Punkte als zusammenhängend interpretiert werden. 
Ist der Radius jedoch zu groß, beziehungsweise der Abstand zweier eigentlich 
getrennter Gewässer kleiner als der Abstand zu dem nächsten Punkt eines 
anderen Gewässers, kann es vorkommen, dass optisch getrennte Wasserflächen 
fälschlicherweise zu einer gemeinsamen Gruppe verschmolzen werden. 

Nach der Gruppierung werden die einzelnen Mesh Islands in eine Repeat Zone 
geführt, welche in ihrer Funktionsweise einer for-loop ähnelt. 
Innerhalb dieser Zone können die einzelnen Gruppen separat weiterverarbeitet 
werden. 
Die Meshes werden erneut mithilfe der Mesh to Points Node in Punktwolken 
umgewandelt, auf eine identische Z-Position gebracht, abstands-basiert 
zusammengeführt (merged) und schließlich mit einer Convex Hull Node zu 
flachen, geschlossenen Wasserflächen zusammengeführt. 

Was auf den ersten Blick trivial wirkt, eine distanz-basierte Gruppierung von 
Vertices, war in der Praxis erstaunlich herausfordernd. 
Ab einem gewissen Grad an Komplexität existieren kaum noch Tutorials oder 
dokumentierte Workflows zu Geometry-Nodes. 
Es gibt nur wenige wirklich erfahrene Anwender, und noch weniger von ihnen 
erstellen didaktisch aufbereitete Inhalte. 

Nach ausgiebigen Versuchen mit der Geometry Proximity Node, um eine stabile 
Lösung für die Distanz-basierten Gruppierungen zu finden, konnten keinen 
konsistenten Ergebnis erzielt werden. 
Der hier gewählte Volumen-basierte Ansatz in Kombination mit der Mesh Island 
Node war zwar nicht der direkteste, für mich persönlich jedoch der einfachste 
und verlässlichste Weg, das gewünschte Verhalten umzusetzen. 
Der Ansatz hat letztlich gut funktioniert, auch wenn er in der Umsetzung deutlich 
komplexer und rechenintensiver war, als ich ursprünglich geplant hatte. 

Rückblickend war das System zwar funktional und technisch interessant, aber für 
den eigentlichen Zweck der Operation überentwickelt. 

Im weiteren Projektverlauf entstand eine wesentlich einfachere und elegantere, 
Boolean-basierte Lösung: 
Dabei wird eine leicht herunterskalierte Plane auf die Höhe des definierten 
Wasserspiegels gesetzt und das Terrain anschließend über einen Difference 
Boolean davon abgezogen. 
Das Ergebnis sind dieselben Wasserflächen, welche sich ebenfalls durch 
verschiedene Mesh Island Indices ansprechen lassen, jedoch mit einem Bruchteil 
der Komplexität. Das ursprüngliche System besteht aus 46 Nodes und eine 
Ausführungszeit von ~24ms, das neue besteht aus 8 Nodes und hat bei 
derselben Ausgangsgeometrie eine Ausführungszeit von ~6ms. Damit bleibt der 
erste Ansatz ein interessantes Experiment, zeigt aber, wie schnell sich 
prozedurale Systeme in ihrer eigenen Komplexität verlieren können. Das Beispiel 
unterstreicht die Bedeutung funktionaler Effizenz gegenüber technischer Finesse, 
wie wichtig es ist, architektonische Entscheidungen kontinuierlich zu hinterfragen 
und Vereinfachungen bewusst anzustreben. 



 
 

37 
 

4.1.4.5 ‚Polish‘ 
Nach der Materialzuweisung wird die Geometrie an die ‚Polish‘-Gruppe 
übergeben. Diese fasst mehrere optionale Funktionen zusammen, die das Terrain 
visuell verfeinern und zusätzliche Konfigurationsmöglichkeiten bereitstellen. 

‚Extrude Grass‘: 
Erlaubt die Extrusion von Flächen mit ‚Grass‘- und ‚TopGrass‘-Material ab einer 
definierbaren Mindesthöhe, um gezielt geometrische Tiefe zu erzeugen. 

‚Snow‘: 
Optional aktivierbares Feature, das ein Schnee-Material auf ausgewählte Flächen 
aufträgt. 
Parameter wie Mindesthöhe, maximaler Neigungswinkel und optionale Extrusion 
des Schnees sind konfigurierbar. 
Die erzeugten Schnee- und Gras-Extrusionen können anschließend Subdivided 
werden, um sie organisch in die bestehende Geometrie zu integrieren. 

‚Scattering‘: 
Ermöglicht die Platzierung von Objektkollektionen auf unterschiedlichen 
Materialien direkt im ‚ProceduralTerrain‘-System. 
Nutzer können Kollektion, Dichte, Skalierung und einen zufälligen 
Skalierungsparameter individuell anpassen. 

Nach Abschluss dieser Verarbeitungsschritte werden die Terrain-Geometrie und 
die parallel erzeugte Wasser-Geometrie über eine Join Geometry Node 
kombiniert. 
Zum Abschluss wird automatisch eine UV-Map generiert, welche für die 
folgenden Systeme, insbesondere das ‚ScatterMeshes‘-System und die 
‚ScatterCurves‘, benötigt wird.  

Abbildung 36: ‚ProceduralTerrain‘ in drei Schritten  

1. Noise-basiertes Terrain (links) 
2. Terrain nach Materialzuweisung und visualisierte Booleans (mittig) 
3. Finales Terrain nach Wassergeneration und durchlaufen der ‚Polish‘-Gruppe (rechts) 
(eigene Darstellung). 
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4.1.5 Erweiterung zum ‚MeshTerrain‘ 
Das anfänglich Entwickelte und umfangreich beschriebene ‚ProceduralTerrain‘- 
System stellt die ursprüngliche Terrain-Implementierung des LPTK dar. Durch das 
Prinzip der noise-basierten Basisgeometrie-Generierung in Kombination mit den 
nutzerdefinierten Boolean Operationen bietet es große Freiheit bei der 
Gestaltung. 

Während einer Testphase zeigte sich jedoch, dass die Noise-basierte 
Basisgeometrie zwar interessant und für explorative Workflows geeignet ist, 
jedoch stört, wenn man ein Terrain nach einer konkreten Vorgabe realisieren und 
somit volle Kontrolle behalten möchte. Dabei wurde die noise-basierte 
Basisgeometrie häufig auf Höhe Null gesetzt, um eine freiere Gestaltung 
ausschließlich mittels der Boolean Geometrien zu erzielen. 

Auf Grundlage dieser Erkenntnis wurde das ‚MeshTerrain‘-
System entwickelt. Das ‚MeshTerrain‘ funktioniert im Kern wie 
das Procedural Terrain und durchläuft alle im vorherigen 
Kapitel vorgestellten Operationsgruppen, mit dem 
Unterschied, dass die Basisgeometrie nicht durch Noise 
definiert wird, sondern das System direkt auf die 
Geometrie des Objekts auf, welches es zugewiesen 
wird, verwendet. So kann das ‚MeshTerrain‘ im 
Gegensatz zum ‚ProceduralTerrain‘ nicht bloß als 
eigenständiges System- sondern vielmehr als eine 
Art Post-Processing-Layer für jede Art von Objekt 
genutzt werden. 

Durch die Entkopplung der prozeduralen Logik ergeben sich 
interessante und flexible Möglichkeiten zur Erstellung 
und Modifizierung von Objekten. 

Die Basisgeometrie kann so durch alle erdenklichen 
Methoden erzeugt und prozedural überarbeitet werden. Beispielsweise können 
nutzerdefinierte Height Maps oder bestehende Terrain-Assets als 

Basisgeometrie genutzt werden. 

Ebenso können verschieden manuelle Modellierungstechniken angewandt 
werden. Abbildung 37 zeigt, wie ein sehr simples Objekt (Wireframe 

orange visualisiert) interessante Geometrien erzeugen kann.   

Besonders interessant ist dabei der Ansatz eine sculpting- 
basierte Basisgeometrie (Abbildung 38) mit dem 
System zu kombinieren. So kann der Nutzer ähnlich 
wie bei den kurven basierten Systemen malend die 
Geometrie des Terrains beeinflussen. 

Die Kombination verschiedener Modellierungsansätze 
ist mit prozeduralen Workflows besonders 

interessant. Ein UV-basierter Ansatz zum 
Scattering wird im folgenden Kapitel besprochen. 

  

Abbildung 37: Mesh-Terrain auf Basis zweier 
einfacher Box-Geometrien (eigene Darstellung). 

Abbildung 38: ‚MeshTerrain‘ auf durch sculpting 
definierter Basisgeometrie (eigene Darstellung). 
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4.1.6 Scattering-Systeme  
Scattering-Systeme gehören zu den am häufigsten eingesetzten prozeduralen 
Workflows zur effizienten Verteilung großer Mengen wiederholter Elemente wie 
Vegetation, Steinen, Pilzen oder kleineren Requisiten. Dabei werden 
Objektinstanzen automatisiert oder semiautomatisiert im Raum platziert und 
über Parameter wie Skalierung, Rotation oder Dichte regel- und/oder 
zufallsbasiert variiert. 

Für das LPTK eignet sich ein malbasierter, interaktiver Workflow besonders gut. 
Ein solcher Ansatz kombiniert eine hohe gestalterische Freiheit (‚User Authority‘) 
mit einer direkten, non-destruktiven und intuitiven Bedienung, sodass der 
Arbeitsprozess dem traditionellen Level-Painting ähnelt. 

4.1.6.1 Herausforderungen eines Weight-Paint-basierten Ansatzes 
Ein gängiger Ansatz zur Instanzverteilung mithilfe von Geometry Nodes nutzt 
eine Kombination aus Distribute Points on Faces und Instance on Points Nodes, 
wobei die Punktdichte über ein Weight-Attribut gesteuert wird. 
Während der Umsetzung eines solchen Workflows zeigten sich im prozeduralen 
Low-Poly-Kontext jedoch zwei wesentliche Einschränkungen: 

1. Weight-Painting: funktioniert nicht auf unrealisierter Geometrie 
Geometry Nodes erzeugen „virtuelle“, d. h. nicht realisierte Geometrie. Auf 
dieser kann kein Weight-Painting erfolgen, ohne dass der Modifier destruktiv 
angewendet wird, was dem non-destruktiven Grundprinzip des LPTK 
widerspricht. 

2. Weight-Painting: ist an Vertex-Dichte gekoppelt  
Die Auflösung des Weight-Paintings hängt direkt von der Anzahl der 
verfügbaren Vertices ab. Da Low-Poly-Assets bewusst mit geringer 
Polygonanzahl modelliert werden, ist eine präzise 
räumliche Maskierung kaum möglich (siehe 
Abbildung 39). Dies führt entweder zu grober 
Verteilung oder zwingt zu unnötig hoher 
Topologie, was wiederum dem Low-Poly-
Design widerspricht. 

 
4.1.6.2 UV-basiertes Curve-Scattering (LPTK-Ansatz)  
Zur Lösung dieser Limitierungen wurde im LPTK ein UV-
basiertes Curve-Scattering-System entwickelt. Es nutzt 
die Curve Sculpting-Werkzeuge von Blender (ursprünglich 
für Hair-Workflows konzipiert) und kombiniert diese mit 
kurvenbasierter Instanziierung in Geometry Nodes.  

Dabei können Kurven direkt auf einem Objekt platziert 
werden, deren Geometrie innerhalb der Geometry Nodes 
genutzt werden kann, um kurvenbasierte prozedurale 
Assets wie Bäume, aber auch Standardobjekte zu 
instanziieren. 

 

Abbildung 39: Visualisierung von 
Weightpainting auf niedrig aufgelöster 
Plane. Die Roten Regionen zeigen 
Vertices mit Weight 1.0, die blauen mit 
weight 0.0. Aufgrund der niedrigen 
Auflösung wirkt sich der Weight-Paint auf 
die umliegenden Faces aus (eigene 
Darstellung). 
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Hauptvorteile des UV-basierten Curve-Scattering-Verfahrens: 

1. Topologie unabhängige Präzision 
Die Maskierung der Scatter-Bereiche erfolgt im UV-Raum, statt über Vertex-
Daten. Dadurch bleibt die Präzision vollständig erhalten auch bei Low-Poly-
Modellen,  

2. Kurven statt Punkte = volle Kontrolle für Kurven-basierte Assets 
Jede Instanz basiert auf einer editierbaren Kurve, die nachträglich mithilfe der 
Curve Sculpting Brushes transformiert, verlängert, gekrümmt oder gelöscht 
werden kann. Kurven-basierte Asset-Systeme wie der in 4.1.1 beschriebene 
‚FunkyTree‘ erhalten somit direkt editierbare Kurven als Geometrie-Input, 
während statische Assets lediglich den Startpunkt der Kurve zur 
Instanziierung nutzen. 

Einschränkungen und Anforderungen dieses Verfahrens: 

1. UV-Maps sind erforderlich 
Das jeweilige Objekt muss UV-unwrapped sein, was einen zusätzlichen Setup-
Schritt zur Automatisierung erfordert. Sobald Mesh-Geometrie hinzugefügt 
oder entfernt wird, muss diese neu unwrapped werden. Je nach Topologie 
kann dies Auswirkungen auf die Performance des Systems haben. 

2. UV-Änderungen wirken sich auf Positionierung der Instanzen aus 
Werden Flächen hinzugefügt, entfernt oder verschoben werden UV-Maps neu 
unwrapped, wodurch es zur Positionsänderungen der Instanzen kommen 
kann. In der Praxis bleibt dies jedoch im Normalfall unkritisch, solange die 
Ausgangsgeometrie nicht grundlegend verändert wird. 

Im LPTK sind zwei Scattering-Systeme implementiert.  

ScatterMeshes 

1. Fügt dem Zielobjekt ein „Empty-Hair-Object“ hinzu 
2. User kann eigene Mesh-Objekte oder Collections 

als Instanzquellen wählen 
3. Platzierung erfolgt über Curve Sculpting 

Brushes 
4. Parameter wie Skalierung und Rotation können 

im Modifier angepasst werden 

ScatterCurves 

1. Funktioniert analog zu 
ScatterMeshes 

2. Instanziert jedoch Kurven basierte 
Assets (z. B. Baumsysteme ‚Birch‘, 
‚Pine1‘ oder ‚FunkyTree‘) 

3. Editierbare Kurven dienen direkt als 
Geometrier Input für prozedurale 
Generierung (nicht reduziert auf 
Startpunkt) 

4. Erweiterbar um weitere Asset-Systeme  

Abbildung 40: Darstellung eines ‚ScatterCuves‘-Systems auf welchem 
drei "Haare" (Kurven) platziert wurden, welche mithilfe der Hair 
Sculpting Brushes angepasst werden können (eigene Darstellung). 
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4.2 Entwicklung des Add-ons in Python 
Wie bereits in 2.4.1 beschrieben, bestehen Blender-Add-ons aus einem oder 
mehreren Python-Skripten, welche in einem ZIP-File zusammengefasst werden 
können. In diesem Abschnitt wird die Entwicklung des LPTK-Add-ons 
beschrieben. Während die Geometry Node Setups (Kapitel 4.1) den prozeduralen 
Kern des Systems bilden, vereint das Add-on diese in einer einheitlichen, 
zugänglichen Benutzeroberfläche und stellt die funktionale Verbindung zwischen 
Nutzerinteraktion und den zugrundeliegenden Node Setups her. 

Das Ziel der Add-on-Entwicklung war es, eine klare, leicht verständliche und 
erweiterbare Struktur zu schaffen, sowohl im Frontend (Nutzeroberfläche) als 
auch im Backend (Code- und Datenstruktur). Dabei standen Verständlichkeit, 
Anpassbarkeit und Stabilität über der formalen Perfektion des Codes. 
Das System soll es ermöglichen, dass spätere Erweiterungen, etwa durch neue 
Node Setups, oder zusätzliche Funktionen, mit minimalem Aufwand, umgesetzt 
werden können. 

Die Entwicklung des Add-ons umfasst: 

• Die Entwicklung der grundlegenden Struktur zum Einlesen bestehender 
Geometry Node Systeme und einfügen dieser in neue Szenen 

• Die Entwicklung der Benutzeroberfläche  
• Die Implementierung des Game-Engine Syncs 
• Die Entwicklung des semi-automatischen Thumbnail-Renderes 

Ein Großteil der Implementierung wurde manuell konzipiert, mithilfe KI-
gestützter Prototypen entwickelt und anschließend auf das eigene Verständnis 
hin angepasst. Auf diese Weise konnten früh funktionierende Ergebnisse erzielt 
werden, die folgend so überarbeitet wurden, dass zu jedem Entwicklungsstand 
ein vollständiges Verständnis der Codebasis bestand. Dadurch wurde verhindert, 
dass unübersichtlicher oder schwer wartbarer Code entsteht. 

Anstelle objektorientierter Muster wurde, wenn möglich, bewusst ein linearer, 
klar lesbarer Aufbau gewählt bspw. If/else-Strukturen statt komplexer Klassen. 
Dieser Ansatz erleichtert das Verständnis des Ablaufs und vereinfacht zukünftige 
Anpassungen und Ergänzungen ohne lange Einarbeitungszeit. 

Zunächst wird das Einlesen der einzelnen Node Trees mit einem Skript behandelt. 
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4.2.1 Einlesen der Node Trees 
Um die erstellten Geometry Node Setups im Add-on verfügbar zu machen, 
werden diese in einer festen Struktur organisiert. Jedes Setup wird in einer 
separaten .blend-Datei gespeichert. Dabei trägt sowohl die Datei als auch der 
darin enthaltene Node Tree denselben Namen. Alle entsprechenden Dateien 
befinden sich im Unterordner ‚/my_geonodes‘, der im Root-Verzeichnis des Add-
ons abgelegt ist.  

Zusätzlich enthält das Root-Verzeichnis die Datei ‚geo_nodes.json‘, welche 
sämtliche Setups beschreibt. Für jeden Node-Tree werden dort die folgenden 
Attribute hinterlegt: 

Beispielhafte geo_nodes.json Struktur für das ‚MeshTerrain‘-Asset im LTPK: 

1. "MeshTerrain": {  
2.         "filename": "MeshTerrain.blend", 
3.         "node_type": "CUBE", 
4.         "category": "Terrain", 
5.         "thumbnail": "MeshTerrain.jpg" 
6.     }, 

Das Add-on liest diese Datei beim Start ein und überführt die Informationen in 
ein Dictionary. Auf diese Weise lassen sich die Pfade zu den Node Trees sowie die 
zugehörigen Metadaten flexibel abrufen. 

Das folgende Code-Snippet zeigt den Aufbau der Datenstruktur aus der .json-Datei: 

1. geo_nodes[name] = { 
2.         "filepath": os.path.join(geonodes_folder, data["filename"]), 
3.         "node_type": data["node_type"], 
4.         "category": data["category"], 
5.         "thumbnail": data["thumbnail"] 
6.             if os.path.isabs(data["thumbnail"]) 
7.             else os.path.join(thumbnails_folder, data["thumbnail"]) 
8.     } 

Durch diese Vorgehensweise ist es möglich, neue Node Trees einfach durch 
Hinzufügen einer .blend-Datei im entsprechenden Verzeichnis, sowie eines 
Eintrags in ‚geo_nodes.json‘ in das Add-on zu integrieren, ohne dass 
Anpassungen im Quellcode erforderlich sind. 
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4.2.2 ‚Node-Types‘ 
Wie bereits in 4.2 beschrieben war ein ausschlaggebendes Argument gegen die 
built-in Asset-Library von Blender die fehlende Unterstützung für 
Kontextabhängige Operationen nach Einfügung eines Assets.  

Im Asset-Library-Workflow können einzelne Assets über Drag-and-Drop direkt in 
die Szene geladen werden. Dies geschieht jedoch, ohne dass der Nutzer 
anschließend in einen spezifischen Arbeitsmodus bspw. Edit-, Shading- oder 
Sculpting-Mode überführt werden kann. 

Um diese Funktionalität im Add-on bereitzustellen, erhält jeder Geometry Node 
Tree einen sogenannten Einfügungskontext. Dieser definiert, auf welcher 
Geometrie und mit welcher Initialkonfiguration der Node Tree in die Szene 
geladen wird. Nach der Einfügung werden kontextspezifische Instruktionsketten 
ausgeführt, die den Nutzer automatisch in die passende Blender-Umgebung 
bringen, um das jeweilige Asset unmittelbar weiterbearbeiten zu können. 

Um diese Unterscheidung zu definieren, wurde das ‚node_type‘-Konzept 
entwickelt über welches zwischen verschiedene Einfügungskontexten der 
jeweiligen Node Trees unterschieden werden kann. 

Zum jetztigen Zeitpunkt wird unterschieden zwischen: ‚CURVE_LOW‘, ‚PLANE‘, 
‚TERRAIN2‘, ‚CUBE‘, ‚GATE‘, ‚CURVE‘ und ‚SCATTER‘, wobei einige Typen von 
mehreren Node Trees „genutzt“ werden und andere komplette special-case 
Lösungen sind. 

Beispielhafte Instruktionen für ‚node_type‘: ‚CURVE_LOW‘: 

 1. if self.node_type == "CURVE_LOW": 
 2.                 bpy.ops.curve.primitive_bezier_curve_add(enter_editmode=True,          
location=context.scene.cursor.location) 
 3.                 obj = bpy.context.active_object 
 4.                 obj.data.resolution_u = 3 
 5.                 bpy.ops.curve.select_all(action='SELECT') 
 6.                 bpy.ops.curve.delete(type='VERT') 
 7.                 bpy.ops.wm.tool_set_by_id(name="builtin.draw") 
 8.                 settings = context.scene.tool_settings.curve_paint_settings 
 9.                 settings.depth_mode = 'SURFACE' 
10.                 settings.use_stroke_endpoints = True 

Wenn das ausgewählte Setup beispielsweise den Typ ‚CURVE_LOW‘ besitzt, wird 
zunächst eine Bézier-Kurve an der Position des 3D-Cursors erzeugt und der 
Nutzer automatisch in den Edit Mode versetzt. Anschließend werden die 
Standardpunkte der Kurve selektiert und entfernt, sodass ein leeres 
Kurvenobjekt als Ausgangspunkt entsteht. 
Danach versetzt das Skript den Nutzer in den „Draw“-Mode, in dem neue 
Kurvensegmente freihändig gezeichnet werden können. Abschließend wird der 
„Surface“-Mode aktiviert, wodurch die Kontrollpunkte der Splines direkt auf 
vorhandene Oberflächen projiziert werden können, bspw. anderen LPTK-Setups. 
Zusätzlich wird die Option „use_stroke_endpoints = True“ gesetzt, sodass nur 
der erste Kontrollpunkt der Spline auf einer bestehenden Geometrie platziert 
wird. 

Praktisch ist das bspw. für die Bäume, bei welchen nur die Wurzel auf den 
bestehenden Objekten platziert werden soll, der Stamm aber nicht. 
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4.2.3 ‚Node-Spawning‘ 
Nachdem die einzelnen Einsetzungs-Kontexte beispielhaft erklärt wurden, gehe 
ich nun auf die konkrete Einsetzungsimplementierung der Assets ein. 

1. Laden der Node Trees aus den externen Dateien 

Zum Importieren von Daten wie Objekten, Materialien oder Geometry Node Trees 
eignet sich die „Append“-Funktion. Diese kopiert Daten aus einer Blender-Datei 
in ein anderes, ohne dabei eine Beziehung zur originalen Ausgangsdatei 
herzustellen. 

Sobald der Nutzer im LPTK-Panel (Kapitel 4.2.4) ein Asset auswählt, erhält der 
Operator den Dateipfad sowie den Namen des zu ladenden Node-Trees. 
Über den Kontextmanager bpy.data.libraries.load() wird die entsprechende 
.blend-Datei geöffnet und geprüft, ob der gewünschte Node Tree enthalten ist: 

 1. def execute(self, context): 
 2. self.report({'INFO'}, f"Spawning {self.node_group_name}...") 
 3. try: 
 4. with bpy.data.libraries.load(self.filepath, link=False) as (data_from, data_to): 
 5. if self.node_group_name in data_from.node_groups: 
 6. data_to.node_groups.append(self.node_group_name) 
 7. else: 
 8. self.report({'ERROR'}, f"Node group '{self.node_group_name}' not found in {self.filepath}") 
 9. return {'CANCELLED'} 

Dieser Schritt importiert ausschließlich den benötigten Node-Tree, unabhängig 
davon, welche weiteren Daten die .blend-Datei enthält. 

2. Ausführung des jeweiligen Einfügungskontext (‚Node-Type‘) 

Nach dem Import des ausgewählten Node Trees durchläuft das Skript die 
‚NodeType‘-Prüfung und führt je nach ausgewähltem Asset eine der definierten If-
Bedingungen aus. In diesen wird wie in 4.2.2 beschrieben immer ein Objekt, 
bspw. eine Kurve oder ein Würfel, in die Szene eingefügt und kontextspezifische 
Operationen vorgenommen. 

10. if self.node_type == "CURVE_LOW": # Node-Types / Einsetzungskontext 
11. elif self.node_type == "PLANE": 
 … 
16. elif self.node_type == "SCATTER": 
 … 

3. Zuweisung des Geometry Nodes Modifiers 

Sobald das korrekte Ausgangsobjekt erzeugt und dem Kontext entsprechend 
vorbereitet wurde, wird dem Objekt ein Geometry Nodes Modifier hinzugefügt, 
welchem der importierte Node Tree zugewiesen wird. 

18. obj = bpy.context.active_object # Auswahl des korrekten, im Node-Type erstellten Objekts 
19. obj.name = self.node_group_name # Namenszuweisung des erstellten Objekts 
20. modifier = obj.modifiers.new(name="GeometryNodes", type='NODES') # Zuweisung eines 
GeometryNodes modifiers 
21. if bpy.data.node_groups.get(self.node_group_name): 
22. else: 
23. self.report({'INFO'}, f"Successfully spawned {self.node_group_name}") 
24. return {'FINISHED'} 

Um mit diesen Funktionalitäten zu interagieren, wurde eine Nutzeroberfläche 
implementiert, dessen Design und Umsetzung im folgenden Kapitel erläutert 
werden.  
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Abbildung 41: Nutzeroberfläche des LPTK 
(eigene Darstellung). 

4.2.4 Nutzeroberfläche 
Die Oberfläche des Add-ons lässt sich dank der Blender Python API nahtlos in die 
bestehende Blender-UI integrieren. Entwickler haben dadurch Zugriff auf nahezu 
alle Bereiche der Software und können diese beliebig anpassen oder erweitern. 

Blender bietet unterschiedliche Oberflächen, für 
verschiedene Workflows, welche sich individuell anordnen 
und konfigurieren lassen. Zentral sind hierbei die 
sogenannten Editor Types50 wobei der „3D-Viewport“ den 
Arbeitsbereich zur Navigation und Modellierung im 
dreidimensionalen Raum bildet. Zur Integration eigener 
Add-on-Oberflächen existieren keine klaren Richtlinien. 
Der letzte offizielle User Interface Design Guide wurde 
2019 mit Blender 2.8 veröffentlicht51. Dennoch haben sich 
durch die stetige Entwicklung von Third Party Add-ons in 
verschiedenen Kategorien informelle Best Practices und 
Designkonventionen ergeben. 

Um eine leicht zugängliche und übersichtliche 
Nutzeroberfläche zu gewährleisten, benötigt das LPTK 
Platz für Vorschaubilder, Knöpfe und Tooltips. Für Add-ons 
mit einem Asset fokussiertem Inhalt und vergleichbarem 
Funktionsumfang, welche nicht direkt auf bestehende 
Blender Funktionen aufbauen, ist die Sidebar52, auch „N-
Panel“ genannt, ein idealer Ort. Hier können 
verschiedenste Tools übersichtlich angeordnet und bei 
Bedarf einzeln ein- und ausgeklappt werden. 

Abbildung 41 zeigt die realisierte Oberfläche des LPTK. Sie 
lässt sich im 3D-Viewport über das N-Panel öffnen und ist 
in drei separat ein- und ausklappbare Unterbereiche 
gegliedert. 

1. ‚Asset -Panel‘: 
Hierüber können die einzelnen Node Setups in die 
Szene geladen werden. Dargestellt werden die 
Assets in einem vertikalen Layout mit Vorschaubild 
und zughörigem Knopf. 
Über Kategorien lassen sich unterschiedliche Asset-
Gruppen ein- oder ausblenden. In Abbildung 41 ist 
die Kategorie ‚Plants‘ ausgewählt. 

2. ‚Collection Exporter‘: 
Darunter befindet sich die Oberfläche des 
‚Collection Exporters‘, mit welchem die Assets 
kollektionsbasiert exportiert werden können (siehe 
4.2.5) 

 
50 Die verschiedenen Editoren können verschiedene Daten des Projekts anzeigen. So lassen sich bspw. im 
Timeline-Editor Keyframes einsehen und setzen oder Shader im Shader Editor erstellen. 
51 https://developer.blender.org/docs/release_notes/2.80/python_api/ui_design/ 
52 https://docs.blender.org/manual/en/latest/interface/window_system/regions.html 
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3. ‚Toolbox‘: 

Im Unteren Bereich befindet sich die ‚Toolbox‘, welche Platz für verschiedene 
Hilfreiche Funktionen bei der Arbeit mit dem LPTK bietet. Zum jetzigen 
Zeitpunkt findet sich an dieser Stelle der ‚Mesh Renamer‘, mit welchem 
automatisch Objekt- und Mesh-Namen angeglichen werden können. 

4.2.4.1 Implementierung der Oberfläche anhand des Asset Panels 
Die Umsetzung der Benutzeroberfläche erfolgt über die Klassenstruktur der 
Blender Python API und basiert hauptsächlich auf der vordefinierten Panel-
Basisklasse53. Jedes Panel wird als eigene Klasse definiert, die von 
bpy.types.Panel erbt. Ein übergeordnetes Panel („LPTK“) fungiert dabei als 
Container, dem die drei Subpanels über ihre parent_id zugeordnet werden. 
Blender erkennt diese automatisch und rendert sie im N-Panel. 

Ein vereinfachter Auszug zeigt den grundlegenden Aufbau: 

1. class GEO_PT_panel(bpy.types.Panel): 
2.     bl_label = "LPTK" 
3.     bl_space_type = 'VIEW_3D' 
4.     bl_region_type = 'UI' 
5.     bl_category = "LPTK" 

Jede Panel-Klasse enthält eine draw()-Methode, die beim Rendern der Oberfläche 
aufgerufen wird. Darin werden alle UI-Elemente definiert, also Knöpfe, Textfelder 
oder Dropdown-Menüs. Im Fall des Asset Panels liest die Methode automatisch 
alle verfügbaren Assets aus dem ‚geo_nodes‘-Dictionary (in 4.2.1 erklärt) und 
stellt sie im Interface dynamisch dar: 

Das folgende vereinfachte Beispiel verdeutl icht das Prinzip: 

1. for name, data in geo_nodes.items(): 
2.     layout.template_icon(icon_value=thumbnail[name]) 
3.     layout.operator("geo.spawn", text=name) 

Die Schleife erzeugt für jedes gespeicherte Asset ein Vorschaubild und den 
zugehörigen Lade-Button. Ein Klick auf den Knopf ruft den Operator ‚geo.spawn‘ 
(wie in 4.2.3 gezeigt) auf, der das entsprechende Geometry Node Setup in die 
Szene lädt. 

Das ‚Category‘-Menü, mit dem die angezeigten Assets gefiltert werden können, 
wird ebenfalls automatisch aus den in ‚geo_nodes‘ hinterlegten Metadaten 
abgeleitet: 

1. bpy.types.Scene.geo_spawner_category = bpy.props.EnumProperty( 
2.     items=get_categories, 
3.     name="Category", 
4.     description="Filter assets by category", 

Auf diese Weise werden die erweiterbaren Aspekte der Oberfläche dynamisch 
erzeugt. Neue Assets erscheinen automatisch im Panel, sobald sie in der JSON-
Datei registriert werden, ohne dass zusätzlicher Code angepasst werden muss. 
Neue Panels oder Operatoren lassen sich problemlos durch Ergänzung weiterer 
Klassen erzeugen, während der bestehende Code unverändert bleibt. 
 

 
53 https://docs.blender.org/api/current/bpy.types.Panel.html 
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4.2.5 Integration des Game-Enginge-Syncs 
Damit 3D-Modelle in der Spieleentwicklung verwendet werden können, müssen 
diese aus der jeweiligen Modellierungsumgebung in die entsprechende Game-
Engine übertragen werden. 

Im Blender Geometry Nodes-Workflow bedeutet dies, dass die Modifier zunächst 
angewendet, das Objekt anschließend in ein Mesh konvertiert und in einem 
gängigen Format (z. B. .fbx) exportiert werden muss. 
Dabei geht der non-destruktive Workflow verloren. 

Wie in Kapitel 2.5.4 beschrieben, bietet der Industriestandard Houdini mit der 
eigenen Houdini Engine eine direkte Integration prozeduraler Systeme in Game 
Engines wie Unity und Unreal. 
Diese enge Verknüpfung bietet einen unkomplizierten Workflow dar, da die 
prozedural generierten Assets non-destruktiv und in Echtzeit innerhalb der Game 
Engine angepasst werden können. Ein erneuter Export oder Import der 
Geometrie entfällt vollständig, was die Non-Destruktivität des Workflows erhält 
und Iterationszeiten sowie Fehleranfälligkeit deutlich reduziert.  

Blender bietet keine native Integration der Geometry Nodes in gängige Game 
Engines, was damit zusammenhängt, dass dafür spezielle Schnittstellen 
entwickelt werden müssten, welche auf proprietären Systemen kommerzieller 
Engines aufbauen würden, was für eine Open-Source Projekt unpassend wäre. 

Es existieren jedoch einige Third-Party-Ansätze, die versuchen, diese Lücke zu 
schließen. Zu den bekanntesten zählen Altermesh für die Unreal Engine sowie 
BEngine, welche sowohl Unity als auch Unreal unterstützt. 
Beide Werkzeuge ermöglichen eine eingeschränkte Synchronisierung von 
Geometry Node-Systemen zwischen Blender und der jeweiligen Game Engine mit 
der Möglichkeit die in Blender exponierten Parameter direkt anzupassen, ohne 
erneuten Ex- und Import. 
Da es sich hierbei jedoch um kleine, unabhängige und kommerzielle Projekte 
einzelner Entwickler handelt, ist ihre Langzeitstabilität stark von Updates der 
Engines und von Blender selbst abhängig.  

Zum jetzigen Zeitpunkt scheint Altermesh nicht mehr unterstütz zu werden 
(letztes Update am 21. Mai 2024, ohne weitere Kommunikation seitens des 
Entwicklers auf dem offiziellen Discord-Server). Der Entwickler der BEngine 
hingegen engagiert sich noch aktiv mit der Entwicklung des Tools und geht auf 
Nutzerfeedback und spezifische Probleme ein. 
Jede neue Version kann jedoch zu Komplikationen führen und das Risiko für eine 
Ende der Unterstützung seitens der Entwickler ist hoch. Außerdem führt das 
Aufbauen auf bestehende thrid-party Lösungen zu weiterem Installationsaufwand 
und ggf. mehr Kosten seitens der LPTK-Nutzer. Deshalb habe ich mich bewusst 
gegen die bestehende Lösung von Externen als Synchronisations-Tool 
entschieden. Dennoch war klar, dass für ein nutzbares Werkzeug ein non-
destruktiver, einfacher und schneller Workflow unersetzlich ist, weshalb eine 
eigene Lösung, der ‚Collection Exporter‘ entwickelt wurde, welcher im nächsten 
Kapitel behandelt wird. 
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4.2.5.1 Collection Exporter 
In Game-Engine-Umgebungen sind Assets typischerweise in Ordnerstrukturen 
organisiert, wobei die 3D-Modelle in spezifischen Unterordnern abgelegt werden. 
Standardmäßig werden die Modelle manuell über das Export-Menü in gängigen 
Formaten wie .fbx oder .gltf in den entsprechenden Ordnern gespeichert. Dieser 
manuelle Workflow ist jedoch zeitaufwendig, potenziell destruktiv und 
fehleranfällig, insbesondere bei komplexen Szenen mit vielen Objekten oder bei 
häufigen Iterationen während der Entwicklungsphase. 

Kollektionen54 sind ein Werkzeug zur Organisation 
in Blender. Sie funktionieren ähnlich wie Ordner 
und ermöglichen es, verschiedene Objekte logisch 
zu gruppieren, ohne diese in eine 
Transformationsbeziehung zu stellen (im 
Gegensatz zum Parenting). Diese Kollektionen sind 
die Basis der implementierten Export-Logik.  

Abbildung 42 zeigt eine einfache 
Kollektionsstruktur, hierbei wurden drei 
Kollektionen angelegt und mit verschiedenen 
Objekten gefüllt, um diese logisch voneinander zu 
trennen. 

 

 

Um einen möglichst einfachen und non-destruktiven 
Iterationsworkflow zu bieten, wurde der ‚Collection 
Exporter‘ entwickelt, welcher sich direkt im Add-on-
Panel des LPTK befindet. 

Über ihn können Kollektionen innerhalb der Blender-
Szene einem beliebigen Pfad zugewiesen werden, wie 
in Abbildung 43 dargestellt.  

Formatspezifische Exporteinstellungen können über 
das Zahnrad konfiguriert werden. Zum Anlegen neuer 
Kollektionen im Export-Workflow können diese über 
den „Add Collection“-Knopf hinzugefügt werden. 
Drückt der Nutzer den „Start Export“-Knopf, wird die 
zentrale Methode des Exporter-Skripts ausgeführt 
und die Objekte der zugehörigen Kollektionen in die 
entsprechenden Verzeichnisse exportiert. 

Die Implementierung des ‚Collection-Exporters‘ wird 
im folgenden Kapitel besprochen. 

 

 
54 https://docs.blender.org/manual/en/latest/scene_layout/collections/collections.html 

Abbildung 43: ‚Collection Exporter‘-Panel 
innerhalb des LPTK Add-ons (eigene Darstellung). 

Abbildung 42: Beispielhafte Darstellung einer 
Kollektionsstruktur im Outliner (eigene Darstellung). 
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4.2.5.2 Implementierung der Export-Logik 
Die Export-Funktion iteriert über alle vom Nutzer definierten ‚Collection-Entries‘, 
verarbeitet deren Inhalt und exportiert die überarbeiteten Meshes in das 
gewünschte Zielformat. Der Workflow bleibt dabei vollständig non-destruktiv, da 
ausschließlich temporäre Objektkopien genutzt werden. Die folgenden Schritte 
fassen die grundlegende Funktionsweise zusammen: 

1. Duplikation der Export-Objekte 

Für jedes Objekt wird zunächst überprüft, ob es einen exportierbaren Typ besitzt 
(„MESH“, „CURVE“ oder „FONT“) Anschließend wird eine temporäre Kopie 
erzeugt. Dies stellt sicher, dass der Exportprozess die Ursprungsobjekte nicht 
verändert. 

233. for obj in collection.objects: 
234.  if obj.type in {'MESH', 'CURVE', 'FONT'}: 
235.      dup = obj.copy() 
236.      dup.data = obj.data.copy() 

2. Konvertierung der Objekte in ein Mesh 

Anschließend werden die zugelassenen Objekte in ein Mesh konvertiert, dabei 
werden die Geometry Nodes Modifier angewandt und die prozedural erzeugte 
Geometrie realisiert. 

243. bpy.ops.object.convert(target='MESH') 

3. ‚Vertex Color Baking Automation‘ 

Falls vom Nutzer aktiviert, wird folgend ein automatisierter Bake-Prozess 
ausgeführt, der die Materialfarben in ein Vertex-Color-Attribut überträgt (wird im 
folgenden Kapitel besprochen). 

4. Export an den spezifizierten Pfad 

Danach wird das Objekt anhand seines Namens und dem in der ‚Export 
Collection‘ definierten Pfades exportiert, dabei werden die in den 
Exporteinstellungen festgelegten Parameter berücksichtigt (Forward Axis etc.). 

5. Entfernung der Duplikate aus der Datei 

Abschließend wird das temporäre Duplikat vollständig aus der Szene entfernt, 
sodass der Nutzer ohne Veränderung an seinem Projekt weiterarbeiten kann. 

275. bpy.data.objects.remove(dup, do_unlink=True) 

 

Das Ergebnis ist eine Reihe einzelner FBX-Dateien im definierten Zielordner, 
während die originale Blender-Datei unverändert bleibt. Nutzer können durch 
diesen Workflow mit einem Knopf ihre Game-Engine Umgebung mit ihrer Blender 
Szene synchronisieren. 
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4.2.5.3 ‚Vertex Color Baking Automation‘ 
Wie in Kapitel 2.3 gezeigt, verzichtet der Low-Poly-Artstyle zwar häufig auf 
komplexe Materialien, dennoch können einfache Farbverläufe oder leichte 
Variationen die visuelle Qualität deutlich erhöhen (siehe Abbildung 44). Solche 
Gradients werden in Blender typischerweise über Shader erzeugt, die jedoch von 
Game-Engines nicht direkt übernommen werden können. Um den Effekt zu 
übertragen, müssten die Materialien entweder in der Engine nachgebaut oder als 
Textur mit korrekt erstellten UV-Maps exportiert werden. Beides manuelle und 
destruktive Arbeitsschritte, die dem non-destruktiven LPTK-Workflow 
widersprechen. 

Um einfache Materialeffekte dennoch automatisiert exportieren zu können, wurde 
innerhalb des ‚Collection Exporters‘ eine Vertex-Color-Baking Automation 
integriert. Vertex Colors werden direkt im Mesh gespeichert und können ohne 
zusätzliche Materialien von allen gängigen Game-Engines verwendet werden. 

Wird Vertex Color Baking in den Exportoptionen 
aktiviert, durchläuft jedes exportierte Objekt nach der 
Mesh-Konvertierung den folgenden Ablauf: 

1. Erstellen des Vertex-Color-Attributs 

Auf der Face Corner Domain wird ein neues Farb-
Attribut erzeugt. Existiert dieses bereits, wird es 
überschrieben. 

2. Konfiguration der Bake-Einstellungen 

Das Skript wechselt in die Cycles-Renderengine, 
aktiviert den Diffuse Bake und setzt „Vertex-
Colors“ als Ziel. Direkte und indirekte 
Beleuchtung werden deaktiviert, sodass 
ausschließlich die Materialfarbe gebacken wird. 

3. Bake-Prozess 

Die Farbinformationen werden in das Vertex-Color-Attribut 
geschrieben. 

4. Ersetzen des Materials 

Abschließend wird das Ursprungsmaterial auf dem 
temporären Objekt durch einen einfachen Diffuse-
Shader ersetzt, welcher das gebackene Vertex-Color-
Attribut als Base Color verwendet. Dieses Setup kann von gängigen Game-
Engines direkt interpretiert werden. 

Dieses Verfahren ermöglicht einen vollständig automatisierten und non-
destruktiven Export von einfachen Farbvariationen, ohne dass UV-Maps oder 
Texturen erstellt werden müssen. Gerade im Low-Poly-Kontext stellt dies eine 
schnelle Möglichkeit dar, Farbvariationen aus Blender in Game-Engines konsistent 
zu übertragen. 

Abbildung 44: Gegenüberstellung zweier 
gleicher Tannen, links ohne Farbverlauf, 
rechts mit Farbverlauf (eigene Darstellung). 
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4.2.6 Entwicklung des ‚Thumbnail-Renderers‘ 
Wie in den vorherigen Kapiteln beschrieben, ist die einfache Erweiterbarkeit des 
LPTK ein zentrales Ziel. Die Kombination aus der klaren Ordner- und JSON-
Struktur (siehe 4.2.1) und dem dynamisch generierten Asset-Panel (siehe 4.2.4) 
ermöglicht eine unkomplizierte Integration neuer Node Setups. 
Damit diese neuen Assets nicht nur funktional, sondern auch visuell konsistent in 
der Benutzeroberfläche eingebunden werden, wurde ein separater, semi-
automatischer ‚Thumbnail-Renderer‘ entwickelt. Dieser ermöglicht die Erzeugung 
einheitlicher Vorschaubilder für alle Node Setups.  

Der Renderer ist vollständig in einer separaten Blender-Datei implementiert, die 
unter „thumbnailRenderer.blend“ im Root-Verzeichnis des Add-ons abgelegt ist. 
Diese Datei enthält eine vorkonfigurierte Szene, bestehend aus: 

• einer Kamera mit fixer Perspektive, 
• einer Beleuchtungssituation, 
• sowie einer dafür vorgesehenen Kollektion namens ‚GeoNodes‘, in welche 

alle zu rendernden Assets platziert werden. 

Neben dem 3D-Viewport befindet sich in der Datei ein geöffneter Text-Editor, der 
ein Python-Skript enthält. Dieses automatisiert den gesamten Rendervorgang. 
Beim Ausführen des Skripts werden alle Objekte der ‚GeoNodes‘-Kollektion 
nacheinander aktiviert, gerendert, im Thumbnail-Ordner mit ihrem Namen 
gespeichert und deaktiviert. 

Die zentrale Funktion findet in diesem Code-Ausschnitt statt: 

 1. # Alle Objekte in der Kollektion werden für das Rendering deaktiviert 
 2. for obj in geo_collection.objects: 
 3.     obj.hide_render = True 
 4.   
 5. for obj in geo_collection.objects: 
 6.     # Aktuelles Objekt wird aktiviert 
 7.     obj.hide_render = False 
 8.   
 9.     # Pfad für die Ausgabe setzen. 
10.     output_path = os.path.join(output_dir, f"{obj.name}.jpg") 
11.     scene.render.filepath = output_path 
12.   
13.     # Rendern und speichern. 
14.     bpy.ops.render.render(write_still=True) 
15.     print(f"Rendered and saved: {output_path}") 
16.      
17.     # Aktuelles Objekt wird deaktiviert 
18.     obj.hide_render = True 

So kann das Thumbnail-Verzeichnis einfach und einheitlich aktualisiert werden, 
wenn sich Änderungen an bestehenden Setups ergeben oder neue hinzugefügt 
werden. 

Da es sich um ein fortgeschritteneres Feature handelt, wurde dieses nicht direkt 
in der UI implementiert. Für Entwickler mit diesem Anspruch ist dies aber ein 
einfacher und zugänglicher Weg. 
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5.  Empirische Evaluation  
Nachdem die konkrete Umsetzung des LPTKs besprochen wurde, erforscht dieses 
Kapitel das Potenzial einer prozeduralen Low-Poly-Asset-Bibliothek im Kontext 
der Spieleentwicklung. Dabei wurde das LPTK im Rahmen einer Nutzerevaluation 
getestet. Ziel war es, Bedienbarkeit, Effizienz und Ergebnisqualität des Systems 
im Vergleich zu einem rein manuellen Workflow zu analysieren und zu bewerten, 
inwiefern das LPTK den Gestaltungsprozess erleichtert und qualitativ verbessert. 

5.1 Aufbau und Methodik 
Die Untersuchung wurde mit fünf Teilnehmern durchgeführt, die einen 
zielgruppenorientierten Querschnitt potenzieller Anwender abbilden sollten. 
Die Zusammensetzung war wie folgt: 

• 2 Teilnehmer ohne Vorerfahrung in 3D-Modellierung oder 
Spieleentwicklung 

• 2 Teilnehmer mit grundlegender Blender-Erfahrung und professioneller 
Erfahrung in der Spieleentwicklung 

• 1 Teilnehmer mit professioneller Erfahrung in der Erstellung stilisierter 
Low-Poly-Assets in Blender 

Jede Testperson erstellte in zwei Durchläufe dasselbe Level-Szenario, basierend 
auf einer vorgegebenen, händisch gezeichneten Referenzskizze (Anhang A7). 
Einmal mit Blender ohne Add-on und einmal mit Blender in Kombination mit dem 
entwickelten LPTK. Anschließend wurde das Level in beiden Szenarien in die 
Godot-Engine importiert. 

Die Tests wurden einzeln durchgeführt und begleitet. Während die 
Einführungsphasen angeleitet wurden, erfolgte die Bearbeitung beider Szenarien 
selbstständig. Technische Rückfragen wurden in beiden Durchläufen beantwortet, 
ohne die inhaltliche Lösung vorzugeben. Die durchschnittliche 
Durchführungsdauer betrug circa 70 Minuten. 

Evaluationsablauf:  
Evaluationsschritt Dauer 
Einweisung in Blender ~10 min 
Terrainerstellung ohne Add-on ~15 min 
Export + Import nach Godot ohne Add-on ~5 min 
Terrainerstellung mit LPTK ~15 min 
Export + Import nach Godot mit LPTK ~5 min 
Fragebogen ~5 min 
Qualitatives Kurzinterview ~5 min 

 
Der Fragebogen wurde mithilfe von Google Forms umgesetzt und bestand aus 
vier Abschnitten. Zunächst wurde die Vorerfahrung der Teilnehmer erhoben. 
Anschließend bewerteten die Tester den Workflow der Terrain-Erstellung einmal 
ohne und einmal mit dem LPTK. Darüber hinaus stand ein Freitextfeld zur 
Verfügung, in dem die Teilnehmer angeben konnten, welche Aspekte des LPTK 
ihnen besonders positiv oder negativ aufgefallen sind. Abschließend wurde ein 
auf die Vorerfahrung der Teilnehmer angepasstes Kurzinterview durchgeführt um 
die Nutzererfahrung vertieft zu besprechen. 
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5.2 Quantitative Ergebnisse  
 

 

 

 

 

 

 

 

 
 

  

 

 

 

 

 

Abbildung 45 zeigt die Selbsteinschätzung der Teilnehmer auf einer 5-stufigen 
Likert-Skala hinsichtlich ihrer Erfahrung mit 3D-Modellierung, Blender als 
Software und prozeduraler Modellierung. Die Stichprobe weist durchschnittlich 
niedrige bis moderate Erfahrungswerte auf, insbesondere im Bereich prozeduraler 
Modellierung (Ø 1,4), ist jedoch in anderen Bereichen individuell stark 
durchmischt. Die Blendererfahrung bildet bspw. Werte von 1 bis 5 ab. Diese 
Zusammensetzung entspricht der angestrebten Zielgruppe des LPTK und bildet 
eine geeignete Grundlage für die Bewertung der Nutzbarkeit des Systems. 

Abbildung 45: Nutzer-Evaluation, Selbsteinschätzung relevanter Vorerfahrung (eigene Darstellung). 
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Die quantitativen Ergebnisse, dargestellt in Abbildung 46, zeigen ein klares 
Muster. Die Einfachheit der Nutzung und speziell die Zufriedenheit mit den 
Ergebnissen bewerten die Tester mit dem LPTK deutlich höher. Während die 
Zufriedenheit mit Blender bei Ø 2,2 liegt, wurde sie mit dem LPTK mit Ø 3,8 
bewertet. Die Einfachheit der Umsetzung bewerteten die Teilnehmer mit dem 
LPTK mit Ø 3,4, mit Blender hingegen nur mit Ø 2,6. Bei der gefühlten Kontrolle, 
welche die Tester über das Terrain hatten, liegen Blender und das LPTK mit Ø 3,0 
gleich auf. Nur bei der Intuitivität des Workflows schneidet das LPTK mit Ø 2,6 
minimal schlechter als Blender mit Ø 2,8 ab. 

Abbildung 46: Quantitativer Vergleich der 
Nutzererfahrung des LPTK (eigene Darstellung). 
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5.3 Qualitative Ergebnisse 
Das qualitative Feedback aus dem Freitextfeld (Anhang A5) sowie den 
abschließenden Kurzinterviews (Anhang A6) liefert eine vertiefte Einsicht in die 
Nutzererfahrung mit dem LPTK.  

Besonders positiv hervorgehoben wurden die kurvenbasierten Assets, die sich 
direkt in die Szene „malen“ lassen. Das einfache Zeichnen von Bäumen, Pfaden 
und Efeu wurde von mehreren Teilnehmern ausdrücklich gelobt und als deutlich 
intuitiver und flexibler beschrieben als herkömmliche, statische, Asset-Workflows. 
Insbesondere die erfahreneren Entwickler betonten, dass dieses 
Interaktionsprinzip eine wesentlich natürlichere und effizientere Gestaltung 
ermöglicht. 

Ein wiederkehrendes Thema war die sofortige visuelle Qualität der 
Ergebnisse. Testern gefiel, dass Formen „direkt gut aussehen“, automatisch 
passende Materialien zugewiesen werden und das System damit bereits in 
nach wenigen Arbeitsschritten ästhetische und stimmige Resultate 
liefert, so konnten auch Tester ohne Modelliererfahrung 
überzeugende Ergebnisse erzielen (Abbildung 47 und 48, weitere 
Resultate im Anhang A2). Außerdem betonten die Tester, 
dass aufgrund der schnellen Ergebnisse, „die 
Arbeit mit dem LPTK mehr Spaß macht“. 

Gleichzeitig zeigte das qualitative Feedback auch 
klare Verbesserungspotenziale am LPTK. Das 
‚ProceduralTerrain‘-System war zentral zur 
Modellierung der Szene und wurde von einigen Teilnehmern 
als „unintuitiv“ und „kompliziert“ beschrieben. Insbesondere der 
Boolean-basierte Workflow war für die Tester, die mit dem Konzept 
nicht vertraut waren, schwierig zu kontrollieren und 
es kam bei einigen zu Problemen und Unsicherheiten. 
Einige Nutzer bevorzugten daher das alternative 
‚MeshTerrain‘, welches als wesentlich kontrollierbarer 
und vorhersehbarer wahrgenommen wurde.  

Auffällig ist, dass viele der kritischen Punkte nicht auf das LPTK 
selbst, sondern auf Blender als Entwicklungsumgebung 
zurückgeführt wurden. Mehrere Tester gaben an, 
dass sie weniger durch das Toolkit, sondern 
vielmehr durch fehlendes Blender-Vorwissen, auf 
welchem das LPTK teilweise aufbaut, eingeschränkt 
wurden. Dies deutet darauf hin, dass das LPTK zwar einen 
niedrigschwelligen und benutzerfreundlichen Ansatz bietet, jedoch 
weiterhin an die Komplexität Blenders gebunden 
bleibt. 

Zusammenfassend bestätigen die qualitativen 
Rückmeldungen, dass das LPTK die kreative Arbeit deutlich erleichtert, ästhetisch 
hochwertige Ergebnisse ermöglicht und insbesondere durch seine 

Abbildung 47: Zeigt das Ergebniss der 
Modellierung der Referenzskizze eines Test-
Nutzers mit dem LPTK (eigene Darstellung). 

Abbildung 48:Zeigt das Ergebnis der 
Modellierung der Referenzskizze eines Test-
Nutzers ohne das LPTK (eigene Darstellung). 
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kurvenbasierten Interaktionswerkzeuge überzeugt. Gleichzeitig zeigen die 
Aussagen der Tester, an welchen Stellen eine Weiterentwicklung sinnvoll wäre. 

6.  Diskussion 
Die Diskussion gliedert sich in drei Abschnitte, die gemeinsam darauf abzielen, 
die in Kapitel 1 formulierte Forschungsfrage unter Berücksichtigung der zentralen 
Untersuchungsbereiche zu beantworten. 

Zunächst wird das LPTK als konkreter Entwicklungsansatz kritisch reflektiert, 
wobei Stärken, Schwächen und mögliche Erweiterungen des Systems 
herausgearbeitet werden.  

Im Anschluss werden die technischen Möglichkeiten und Grenzen von Blender 
und den Geometry Nodes als Grundlage prozeduraler Assetgenerierung sowie 
deren Einbindung in eine Add-on-basierte Interaktionsoberfläche diskutiert.  

Abschließend wird der Ansatz prozeduraler Assets im Kontext der 
Spieleentwicklung allgemein bewertet, um die gewonnenen Erkenntnisse in einen 
größeren fachlichen Zusammenhang einzuordnen. 

6.1 LPTK als entwickelter Ansatz  
Die Entwicklung des LPTK zeigt, dass der Ansatz einer benutzerorientierten 
prozeduralen Asset-Bibliothek grundsätzlich funktioniert und die prozedurale 
Arbeitsweise einen merkbaren Mehrwert liefern kann.  

Der Post-Processing Mixed-Authorship-Ansatz, welchen viele der erstellten Assets 
verfolgten, hat sich als besondere Stärke des Systems herausgestellt. Systeme 
die eine Basisform, wie eine Kurve oder ein einfaches Mesh zu einem visuell 
komplexen und ansprechenden Ergebnis formen, haben sich in der 
Testerevaluation als intuitiv und wirkungsvoll herausgestellt. 

Diese direkte, skizzenartige Arbeitsweise reduziert technische Komplexität 
spürbar und fördert einen kreativen, experimentellen Workflow, was genau dem 
Ziel des Projekts entspricht. 

Das Toolkit zeigt außerdem, dass die Nutzung prozedurale Systeme bei der 
Erstellung kleiner bis mittelgroßer Low-Poly-Szenen deutlich zeit-effizienter ist. 
Feedback durch Tester und eigene Erprobung zeigen, dass der Look der 
generierten Assets konsistent ist. Das System macht sichtbar, dass prozedurale 
Methoden, wenn sie gut aufbereitet sind, auch für weniger erfahrene Nutzer 
einfach zugänglich gemachte werden können. 

Gleichzeitig ist während der Entwicklung und Evaluation deutlich geworden, dass 
der Umfang des LPTK zu ambitioniert war. Der Anspruch war es, nur mit dem 
System komplexe Szenen vollständig abbilden zu können. Die Entwicklung 
einzelner Funktionen und Systeme hat jedoch sehr viel Zeit in Anspruch 
genommen. Das ursprüngliche in 4.1.4 thematisierte System zur 
Wassergruppierung ist bspw. aufgrund unzureichender Erfahrung und Funktionen 
innerhalb Blenders in eines der größten Projekte dieser Arbeit ausgeartet. 
Dadurch und durch andere Komplikationen wurde einige Node Setups, sowohl in 
ihrem Funktionsumfang als auch in ihrer Parametrisierung und Bedienlogik, nicht 
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vollständig umgesetzt. Aus dem ambitionierten quantitativen Anspruch und der 
mangelnden Zeit entstand ein Qualitätsgefälle zwischen einzelnen Systemen was 
beispielsweise dazu führte, dass einige Features des ‚ProceduralTerrains‘ nicht im 
‚MeshTerrain‘ implementiert waren, was auch bei der Testerevaluation für 
Verwirrung sorgte. 

Einige geplante Features wie Innenräume für das Tower- und Castle-Setup sowie 
ein mesh-basiertes Haussystem konnten nicht zufriedenstellend umgesetzt 
werden und wurden abgebrochen, obwohl begehbare Innenräume in vielen 
Spielkonzepten einen deutlichen Mehrwert bieten würden. 

Trotz dieser Grenzen zeigt die in dieser Arbeit entwickelte Implementation des 
LPTK ein hohes Potenzial. Die Werkzeuge funktionieren, die Interaktion ist 
intuitiv, und die Ergebnisse sind konsistent reproduzierbar. Die Testerevaluation 
bestätigt, dass das Toolkit technische Hürden senkt und kreative Entscheidungen 
deutlich erleichtert. Damit liefert das LPTK nicht nur einen funktionsfähigen 
Prototypen, sondern auch wichtige Erkenntnisse darüber, wie eine prozedurale 
Asset-Bibliothek gestaltet sein kann, um zugänglich, erweiterbar und für die 
Spieleentwicklung einen tatsächlichen Mehrwert zu liefern. 

6.2 Blender und Geometry Nodes als Basis des LPTK 
Die Wahl von Blender und Geometry Nodes als technisches Fundament des LPTK 
hatte Vor- und Nachteile. Nachdem in 3.2.1 die Gründe genannt wurden, die vor 
dem Start des Projekts für Blender sprachen, wird in diesem Kapitel die 
Entscheidung nach Durchführung des Projekts diskutiert. 

Wie bereits erwähnt, stellte die bereits vorhandene Erfahrung mit Blender einen 
entscheidenden Vorteil für die Wahl dar. Die Entwicklung der Systeme konnte 
nach kurzer Einarbeitung in die Grundkonzepte der Geometry Nodes beginnen, 
ohne dass viel Zeit in das Erlernen der grundlegenden Oberflächen einer 
alternativen Umgebung wie Houdini investiert werden musste. 

Die grundlegenden Konzepte zur Funktionsweise von Geometry Nodes wirken 
anfangs komplex. Das Spreadsheet, Fields, Instanziierung und Selektion 
unterscheiden sich in vielerlei Hinsicht stark von manuellen Workflows und 
schrecken selbst erfahrene Blender-Nutzer anfangs ab.  Sobald die 
grundlegenden Prinzipien jedoch verstanden sind, lassen sich Systeme flexibel 
erweitern, funktionelle Muster erkennen und in unterschiedlichen Kontexten 
wiederverwenden.  

Durch die Kombination verschiedenster Nodes sind umfangreiche Systeme, die 
komplexe Probleme lösen, mit Geometry Nodes durchaus umsetzbar. Häufig wird 
jedoch selbst für die Erstellung simpler Systeme eine Vielzahl an kombinierten 
Nodes benötigt, was die Erstellung der Node Trees unnötig verkompliziert. 

Was Blender als Basis rückblickend besonders interessant für Mixed-Authorship 
orientierte Systeme macht, sind die klassischen Modellierungswerkzeuge, die 
bereits sehr ausgereift sind und sich mit prozeduralen Systemen wie 
beispielsweise dem MeshTerrain optimal kombinieren lassen. Polygonale 
Modellierung, Sculpting oder Hair-Sculpting bieten eine starke Grundlage und 
sind optimal für experimentelle Systeme wie die in 4.1.6 beschriebenen 



 
 

58 
 

‚ScatterCurves‘ nutzbar. Diese Kombination aus traditioneller Modellierung und 
prozeduraler Generierung war für das LPTK ein großer Vorteil, da viele Ideen zur 
Interaktion mit dem System Ideen aus beiden Bereichen miteinander verknüpft. 

Dem entgegen birgt die Wahl von Blender und insbesondere der Geometry Nodes 
zur Erstellung einer professionellen auch einige Risiken.  
Wie bereits in 2.5.5. beschrieben, befinden sich die Geometry Nodes noch in 
voller Entwicklung und wurden in den letzten Jahren mehrmals fundamental 
verändert. Das LPTK wurde mit Blender 4.5 entwickelt, mit der Veröffentlichung 
von Blender 5.0 wurden die Geometry Nodes erneut in vielen Bereich 
überarbeitet, sodass einzelne Setups in Zukunft potenziell nicht mehr 
funktionieren oder angepasst werden müssen. Diese fehlende Stabilität 
erschwert es, langfristig nutzbare Systeme zu bauen und in einem 
professionellen Kontext einzusetzen. 

Auch die Dokumentation ist nicht durchgehend zuverlässig. Grundlagen werden 
teilweise gut erklärt, aber komplexere Konzepte wie Repeat Zones oder 
fortgeschrittene Selektionslogiken werden nur sehr oberflächlich behandelt und 
nicht anhand passender Beispiele besprochen. In der Community gibt es zwar 
einzelne Creator, die komplexere Systeme vorstellen, doch im Vergleich zur 
klassischen Modellierung oder Shader-Entwicklung ist das verfügbare 
Lernmaterial für Geometry Nodes deutlich geringer, was dazu führt, dass bei 
spezifischen Problemen eigene Lösungen erarbeitet werden müssen. Viele 
Tutorials sind zudem, ähnlich wie die Dokumentation, schnell veraltet, da sich die 
Nodes ständig verändern, was die Fehlersuche oder Weiterentwicklung 
zeitaufwendig macht. 

Ein weiterer limitierender Faktor zur Erstellung nutzerfreundlicher Systeme ist 
das Modifier-Stack eingebundene Interface der Geometry Nodes. Viele 
Parameter, welche die prozedurale Logik steuern können, nicht verfügbar 
gemacht werden. Beispielsweise lassen sich weder Kurven (Float/RGB) noch 
Colors Ramps exponieren. Die Konfiguration des Panels ist ebenfalls 
eingeschränkt. Zwar werden Parameter im Modifier je nach Nutzbarkeit visuell 
kodiert, es gibt aber keine Möglichkeit exponierte Parameter dynamisch zu 
generieren, was die kontextabhängige UI-Gestaltung erschwert, wodurch 
zwangsläufig Kompromisse bei Bedienbarkeit und Klarheit der Systeme 
entstehen.  

Hinzu kommt die fehlende native Synchronisation in gängige Game Engines. Für 
einen Spieleentwicklungs-Workflow wäre eine native und direkte Anbindung, 
durch ein neues Dateiformat oder analog zur Implementation der Houdini Engine, 
ein großer Vorteil. 

Insgesamt zeigen Blender und Geometry Nodes im Speziellen jedoch ein großes 
Potenzial, vor allem für kleine Teams oder Solo-Entwickler, die nach einer 
kostengünstigen und flexiblen Lösung suchen und denen kontinuierliche 
Weiterentwicklung wichtiger ist, als absolute Langzeitstabilität.  

Insgesamt kann festegestellt werden dass, sich Blender für sehr umfangreiche, 
langfristig gepflegte Bibliotheken heute nur eingeschränkt empfehlen lässt. Für 
kleinere, experimentelle Systeme, wie das LPTK, ist Blender aber eine optimale 
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Basis, weil es schnelle Iterationen erlaubt, eine starke Modellierungsumgebung 
mitbringt und prozedurale Experimente sehr direkt unterstützt. 

6.2.1 Blender Python API zur Add-on Entwicklung 
Die Entwicklung des Add-ons mithilfe der Blender Python API (bpy) nahm im 
Vergleich zur Erstellung der prozeduralen Assets weniger Zeit in Anspruch, soll in 
diesem Kontext dennoch kurz reflektiert werden. 

Die bpy ist ein mächtiges Werkzeug und für die professionelle Integration 
benutzerdefinierter Funktionen in Blender unumgänglich. Sie bietet im Kontext 
des LPTK eine Flexibilität, welche mit dem integrierten Asset-Library-System 
nicht erreicht worden wäre. So ermöglichten sie eine Vielzahl an Workflow-
Optimierungen, wie die in 4.2.2 beschriebenen, kontextspezifischen ‚NodeTypes‘, 
wodurch die Nutzung des LPTK erleichtert wurde. 

Gleichzeitig traten während der Entwicklung spezifischer Features einige 
Herausforderungen auf. So ist die in Kapitel 4.2 angesprochene Operatoren-Logik 
von Blender stark kontextabhängig. Dadurch kann die Ausführung der 
Instruktionen abweichend vom erwarteten Verhalten erfolgen, wenn sich der 
Nutzer in einem spezifischen Fenster oder UI-Element befindet. Diese 
Kontextsensitivität erschwert das Debugging erheblich und kann bereits bei 
geringfühgig unterschiedelicher Nutzung zu unerwarteten Fehlern führen. 

Zuletzt leidet auch die Blender Python API, ähnlich wie die Geometry Nodes, 
stellenweise unter einer unzureichenden Dokumentation. Durch die schnelle 
Weiterentwicklung, Änderung von Konzepten und die Open-Source-Natur kommt 
es stellenweise zu undokumentierten Funktionen. Für die Integration spezifischer 
Features, wie der in Kapitel 4.2.5.3 beschriebenen ‚Vertex Color Baking 
Automation‘, existieren wenige Ressourcen, was die Entwicklungszeit deutlich 
verlängert. 

 

6.3 Prozedurale Assets für die Spielentwicklung 
Im Folgenden wird der prozedurale Ansatz im Kontext der Spieleentwicklung 
diskutiert, unabhängig von der spezifischen Entwicklungsumgebung. Im Fokus 
stehen dabei Systeme mit einem Mixed-Authorship-Ansatz55, welche den Kern 
dieser Arbeit und des entwickelten LPTKs darstellen. 

Die Entwicklung prozeduraler Systeme zur Asset-Generierung ist initial meist mit 
einem deutlich höheren Aufwand verbunden als die manuelle Erstellung einzelner 
Modelle. Ein einfacher Low-Poly-Baum kann beispielsweise innerhalb weniger 
Minuten manuell modelliert und texturiert werden, während die Entwicklung 
eines Systems, das vergleichbare Bäume automatisch generiert, wesentlich mehr 
Zeit beansprucht. Prozedurale Lösungen amortisieren sich daher vor allem dann, 

 
55 Die „Autorenschaft“ des Nutzers ist innerhalb der im LPTK implementierten Systeme 
stärker gewichtet als in den in der Literatur beschriebenen Beispielen, weshalb der Begriff 
nur bedingt zutrifft. Die hier vorgestellten Systeme ließen sich präziser als ‚user-
authoritative‘ bzw. ‚nutzer-autoritativ‘ beschreiben. 



 
 

60 
 

wenn ein Asset häufig eingesetzt wird oder signifikant von Eigenschaften wie 
Variation, Anpassbarkeit und Wiederverwendbarkeit profitiert. 

Aus diesem Grund muss in der Spieleentwicklung kritisch abgewogen werden, ob 
ein Asset durch prozedurale Eigenschaften einen realen Mehrwert erhält. Ein 
prozeduraler Ansatz sollte niemals als Selbstzweck dienen. Die bloße technische 
Machbarkeit rechtfertigt nicht automatisch den Entwicklungsaufwand. 
Insbesondere Technical Artists und Entwickler neigen dazu, aus technischer 
Begeisterung komplexe Lösungen zu implementieren, ohne dass die 
Problemstellung diese Komplexität erfordert. Weder das Endergebnis noch der 
Workflow profitieren von einer theoretisch unendlichen Anzahl an Baumvarianten, 
wenn das Projekt faktisch nur wenige, klar definierte Modelle benötigt. 

Bieten prozedurale Systeme jedoch einen funktionalen Vorteil, etwa durch die 
präzisere Abbildung einer kreativen Vision, erleichterte Anpassungen oder eine 
spürbare Beschleunigung des Workflows, entfalten sie ein erhebliches Potenzial. 

Besonders der Bereich Mixed-Authorship-Asset-Packs, wie in dieser Arbeit 
erforscht, bietet hierbei vielversprechende Möglichkeiten. Hier greifen 
Skaleneffekte, die den hohen Initialaufwand der Entwicklung rechtfertigen. Da 
das prozedurale System nicht nur für ein einziges Projekt, sondern 
projektübergreifend von einer Vielzahl von Entwicklern genutzt werden kann, 
amortisiert sich die komplexe Entwicklung deutlich schneller als bei einer 
proprietären In-House-Lösung. 

Durch die Prozeduralisierung werden zudem wesentliche Nachteile klassischer 
Asset-Packs gelöst. Der Nutzer muss seine Vision nicht mehr an die statischen 
Formen der vorhandenen Assets anpassen. Stattdessen ermöglichen es die 
prozeduralen Parameter, die Assets flexibel an die eigene kreative Vision 
anzugleichen.  

Trotz dieses Potenzials stellen Mixed-Authorship-Systeme für 3D-Geometrie in 
gängigen Asset-Stores derzeit noch eine Nische dar. Während prozedurale 
Materialien in der Industrie bereits weit verbreitet sind, existieren kaum 
vergleichbare, zugängliche Lösungen für die Modellgenerierung. Die Entwicklung 
und Etablierung solcher Asset-Packs würde somit eine signifikante Lücke im 
aktuellen Marktangebot schließen und könnte einen echten Mehrwert bieten. 
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7.  Fazit und Ausblick 
Die intensive Auseinandersetzung mit der prozeduralen Modellierung sowie die 
praktische Ausarbeitung des LPTK haben gezeigt, dass im Mixed-Authorship-
Ansatz ein großes Potenzial steckt. Die Ergebnisse machen deutlich, dass dieser 
Weg, verglichen mit statischen Asset-Packs und der manuellen Modellierung, 
einen echten Mehrwert bieten kann, sobald Flexibilität, Anpassbarkeit und 
Entwicklungsgeschwindigkeit gefragt sind.  

Zwar existieren auf dem Markt bereits vereinzelte prozedurale Systeme für 
spezifische Aufgaben wie die Terrain-Generierung, umfassende und zugängliche 
Bibliotheken für Indie-Entwickler fehlen hingegen weitgehend. Die Arbeit zeigt, 
dass der Ansatz insgesamt noch unterschätzt wird und viele Möglichkeiten für 
effizientere Workflows bietet. 

Gleichzeitig haben Evaluation und Diskussion des Ansatzes aber auch 
Herausforderungen aufgezeigt. Damit solche Werkzeuge ihren vollen Nutzen bei 
der potenziellen Zielgruppe entfalten können, müssen sie so nah wie möglich am 
Zielsystem, der Game-Engine, integriert sein. Das LPTK ist zum jetzigen 
Zeitpunkt am stärksten durch die Integration in Blender eingeschränkt. Trotz des 
entwickelten ‚Collection Exporters‘ und der ausgearbeiteten Nutzeroberfläche 
stellt dieser technische Zwischenschritt eine große Hürde dar.   

Für das LPTK ist das Projekt mit dieser Arbeit dennoch nicht beendet. Geplant 
sind eine Migration auf Blender 5.0 sowie eine Aufarbeitung der einzelnen 
Systeme basierend auf dem erhaltenen Nutzerfeedback. Mein Ziel ist es, das 
Toolkit anschließend kostenlos zu veröffentlichen. Damit möchte ich Indie-
Entwicklern eine konkrete Hilfe an die Hand geben und weiter auf das 
vielversprechende Thema der prozeduralen Modellierung aufmerksam machen. 
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Anhang 

A1 Übersicht über aller Thumbnails der verfügbaren Node 
Setups des LPTK 
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A1 Übersicht über aller Thumbnails der verfügbaren 
prozeduralen Assets des LPTK 
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A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation 
Renderings aller Ergebnisse der Nutzerevaluation.  

Links nur Blender, Rechts mit LPTK 

1/2 
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A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation 
Renderings aller Ergebnisse der Nutzerevaluation.  

Links nur Blender, Rechts mit LPTK 

2/2 
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A3 Kategorisierung von Indie-Spielen mit mehr als 
einer Millionen Verkäufe 
Die Ausgangsquelle wurde zur Erstellung von Abbildung 3 händisch in 
Spiele mit 2D und 3D-Darstellungen unterteilt. Aufgrund des Umfangs 
der Analyse wurde diese nicht ausgedruckt, kann aber online 
abgerufen werden 

Auswertung: https://joshuabattenfeld.com/LPTK/THESIS/A3 

Als Ausgangsquelle diente: https://en.wikipedia.org/wiki/Indie_game 

Abgerufen am: 18.11.2025 

 

A4 Kategorisierung der „Top 100 Paid Assets” des Unity 
Asset Stores 
Zur Erstellung von Abbildung 6 wurde die analysiert und die einzelnen 
Assets händisch kategorisiert. Aufgrund des Umfangs der Analyse 
wurde diese nicht ausgedruckt, kann aber online abgerufen werden 

Auswertung: https://joshuabattenfeld.com/LPTK/THESIS/A4 

Als Ausgangsquelle diente: https://assetstore.unity.com/top-assets/top-paid 

Abgerufen am: 30.09.2025 

A5 Ergebnisse der Nutzerevaluation, Google-Forms 
Ergebnisse als csv: https://joshuabattenfeld.com/LPTK/THESIS/A5 

 

 

 

A6 Ergebnisse der Nutzerevaluation, Kurzinterviews 
Stichpunktartige Zusammenfassung: 
https://joshuabattenfeld.com/LPTK/THESIS/A6 

 

 

 

A7 Referenzskizze der Nutzerevaluation 
Skizze: https://joshuabattenfeld.com/LPTK/THESIS/A7 

 

A3 

 
 

A4 

 

 

A5 

A6 

A7 


	1. Einleitung
	2. Theoretischer Hintergrund
	2.1 Indie-Spielentwicklung
	2.2 3D-Modelle im Kontext der Spieleentwicklung
	2.2.1 Polygonale Darstellung von 3D-Modellen
	2.2.2 Beschaffung von 3D-Modellen

	2.3 Low-Poly Artstyle
	2.3.1 Gründe für Low-Poly im LPTK

	2.4 Blender im Indie-Spielentwicklungs Kontext
	2.4.1 Blender Add-ons

	2.5 Procedural Content Generation
	2.5.1 Prozedurale Modellierung
	2.5.2 Vor- und Nachteile prozeduraler Systeme
	2.5.3 Automatic Generation versus Mixed Authorship
	2.5.4 Moderne Node-Based-Tools
	2.5.4.1 Houdini als Industriestandard
	2.5.4.2 Spezialisierte Lösungen

	2.5.5 Blender Geometry Nodes
	2.5.5.1 Das Attribut-Konzept
	2.5.5.2 Das Feld-Konzept (Fields)
	2.5.5.3 Entwicklung der Geometry Nodes und Arbeitsumgebung



	3. Methodik
	3.1 Anforderungen an die entwickelte Asset-Bibliothek
	3.2 Auswahl der Werkzeuge
	3.2.1 Blender und Geometry Nodes als prozedurale Basis
	3.2.2 Add-on statt Blenders integrierter Asset-Library


	4. Umsetzung
	4.1 Entwicklung der Geometry Node Trees
	4.1.1 Erste Experimente
	4.1.2 Parametrisierung anhand des ‚FunkyTree‘-Systems
	4.1.3 Kurvenbasierte Pfadgenerieung
	4.1.3.1 ‚Curve to Plane‘
	4.1.3.2 Instanziierung und Projektion mit ‚Stones on Surface‘
	4.1.3.3 ‚Material Manager‘
	4.1.3.4 ‚Default Stone Extrusion and Deformation‘

	4.1.4 ‚ProceduralTerrain‘
	4.1.4.1 Basis-Mesh & Booleans
	4.1.4.2 ‚Merge & Triangulation‘
	4.1.4.3 ‚Material Manager‘
	4.1.4.4 ‚Water Generation‘
	4.1.4.5 ‚Polish ‘

	4.1.5 Erweiterung zum ‚MeshTerrain‘
	4.1.6 Scattering-Systeme
	4.1.6.1 Herausforderungen eines Weight-Paint-basierten Ansatzes
	4.1.6.2 UV-basiertes Curve-Scattering (LPTK-Ansatz)


	4.2 Entwicklung des Add-ons in Python
	4.2.1 Einlesen der Node Trees
	4.2.2 ‚Node-Types‘
	4.2.3 ‚Node-Spawning‘
	4.2.4 Nutzeroberfläche
	4.2.4.1 Implementierung der Oberfläche anhand des Asset Panels

	4.2.5 Integration des Game-Enginge-Syncs
	4.2.5.1 Collection Exporter
	4.2.5.2 Implementierung der Export-Logik
	4.2.5.3 ‚Vertex Color Baking Automation‘

	4.2.6 Entwicklung des ‚Thumbnail-Renderers‘


	5.  Empirische Evaluation
	5.1 Aufbau und Methodik
	5.2 Quantitative Ergebnisse
	5.3 Qualitative Ergebnisse

	6.  Diskussion
	6.1 LPTK als entwickelter Ansatz
	6.2 Blender und Geometry Nodes als Basis des LPTK
	6.2.1 Blender Python API zur Add-on Entwicklung

	7.  Fazit und Ausblick
	Literatur
	Abbildungsverzeichnis
	Bildquellen
	Anhang
	A1 Übersicht über aller Thumbnails der verfügbaren Node Setups des LPTK
	A2 Ergebnisse der Modellierung innerhalb der Nutzerevaluation
	A3 Kategorisierung von Indie-Spielen mit mehr als einer Millionen Verkäufe
	A4 Kategorisierung der „Top 100 Paid Assets” des Unity Asset Stores
	A5 Ergebnisse der Nutzerevaluation, Google-Forms
	A6 Ergebnisse der Nutzerevaluation, Kurzinterviews
	A7 Referenzskizze der Nutzerevaluation


